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Abstract: We derive an index theorem for the Dirac operator in the background of various

topological excitations on an R3 × S1 geometry. The index theorem provides more refined

data than the APS index for an instanton on R4 and reproduces it in decompactification

limit. In the R3 limit, it reduces to the Callias index theorem. The index is expressed

in terms of topological charge and the η-invariant associated with the boundary Dirac

operator. Neither topological charge nor η-invariant is typically an integer, however, the

non-integer parts cancel to give an integer-valued index. Our derivation is based on axial

current non-conservation — an exact operator identity valid on any four-manifold — and

on the existence of a center symmetric, or approximately center symmetric, boundary

holonomy (Wilson line). We expect the index theorem to usefully apply to many physical

systems of interest, such as low temperature (large S1, confined) phases of gauge theories,

center stabilized Yang-Mills theories with vector-like or chiral matter (at S1 of any size),

and supersymmetric gauge theories with supersymmetry-preserving boundary conditions

(also at any S1). In QCD-like and chiral gauge theories, the index theorem should shed

light into the nature of topological excitations responsible for chiral symmetry breaking and

the generation of mass gap in the gauge sector. We also show that imposing chirally-twisted

boundary condition in gauge theories with fermions induces a Chern-Simons term in the

infrared. This suggests that some QCD-like gauge theories should possess components with

a topological Chern-Simons phase in the small S1 regime.
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1 Introduction

1.1 Motivation

A method to study non-perturbative aspects of an asymptotically free gauge theory on R4 is

to begin with a compactification on R3×S1. S1 may be either a spatial or temporal circle,

determined according to the spin connection of fermions. In asymptotically free gauge

theories, the size of S1 is a control parameter for the strength of the running coupling at

the scale of compactification. At radius much smaller than the strong length scale, the

theory is weakly coupled and at large radius, it is strongly coupled. It is well-known that

certain aspects of weakly coupled gauge theories are amenable to perturbative treatment.

It is less known that such gauge theories also admit a semi-classical non-perturbative

treatment if the boundary Wilson line (Polyakov loop) satisfies certain conditions.

– 1 –
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Let U(x) denote the holonomy of Wilson line wrapping the S1 circle:

U(x) = P exp i

∮

A4dy, x ∈ R3, y ∈ S1 , (1.1)

where A4(x, y) is the component of the gauge field along the compactified direction. If

the eigenvalues of the A4 field (which are gauge invariant) repel each other in the weak

coupling regime, for a dynamical reason or due to a deformation described below, then the

boundary value of the A4 field as |x| → ∞ takes the form:

A4

∣
∣
∞ = diag(v̂1, v̂2, . . . v̂N ) , v̂1 < v̂2 < . . . < v̂N . (1.2)

In the weak coupling regime, A4 behaves as a compact adjoint Higgs field and the vacuum

configuration (1.2) induces gauge symmetry breaking, G→ Ab(G), to the maximal abelian

subgroup Ab(G). This means that there exist a plethora of stable topological excitations

in such four dimensional gauge theories, such as magnetic monopoles, magnetic bions,

instantons and other interesting (stable) composites.

It is well-known that in a thermal set-up at sufficiently high temperatures (and weak

coupling), dynamics disfavors configurations for Wilson lines such as (1.2) [1], and favors

configurations for which A4

∣
∣
∞ = diag(v̂, v̂, . . . v̂) = (0, 0, . . . , 0). In such cases, the effect

of topological excitations is suppressed by volume factors, and semi-classical techniques

do not usefully apply [1]. Due to these legitimate reasons, semi-classical methods in finite

temperature setting have not received wide attention so far (although see [2]), and are not

part of the common-place techniques to study Yang-Mills theory and non-supersymmetric

Yang-Mills theory with vector-like and chiral matter, compactified on a circle.

However, there are at least three ways to make such boundary values of Wilson lines

stable at weak coupling. These are: a.) center-stabilizing double-trace deformations, b.)

adjoint fermions with periodic boundary conditions, or mixed representations of adjoints

and a few complex representation fermions all with periodic boundary conditions, and c.)

supersymmetry and supersymmetry preserving boundary conditions. In this sense, the case

of non-trivial holonomy (1.2) at weak coupling is as generic as the high-temperature trivial

holonomy. In particular, with the center stabilizing double-trace deformations, certain

gauge theories on R4, such as Yang-Mills theory and vector-like and even chiral theories

can be smoothly connected to small S1×R3 [3–5]. There already exist evidence from lattice

gauge theory (where deformations were also suggested independently to explore phases of

partial center symmetry breaking) that the conjecture of smoothness holds for Yang-Mills

theory [6].1 Therefore, there is currently a strong incentive to study in detail the topological

excitations on R3 × S1 and the index theorems associated with these excitations.

Our interest is in the index of the Dirac (or Dirac-Weyl) operator D̂ (1.5) in the

background of topological excitations pertinent to the gauge theory on R3 × S1. The

reason that this is interesting for non-perturbative physics is two-fold:

1The center-stabilized small-S1 regime of gauge theories is amenable to both numerical lattice simulations

and non-perturbative semi-classical techniques. In this sense, this regime provides a first example in which

we can confront a controlled approximation, including non-perturbative effects, with the lattice, and is, in

our opinion, an important opportunity for both lattice and continuum gauge field theory.

– 2 –
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• The topological excitations with non-vanishing index will carry compulsory fermion

zero modes attached to them, and may induce chiral symmetry breaking. Generically,

the fermionic index of a monopole operator on R3 × S1 is (much) smaller than the

APS index for the BPST instanton. Thus, they are in principle more relevant for low

energy phenomena.

• The generation of mass gap (and confinement) for gauge fluctuations, in the weak

coupling regime, requires the existence of topological excitations with vanishing in-

dex. In typical QCD-like and chiral gauge theories, most of the leading topological

excitations (monopoles) carry fermionic zero modes, hence cannot contribute to the

mass gap. Therefore, the index theorem can be used to identify composite topological

excitations (such as magnetic bions) for which the sum of individual indices add up

to zero.

A simple example which illustrates both issues is Yang-Mills theory with adjoint fermions

(QCD(adj)) and N = 1 SYM. In both cases, magnetic monopole operators (which appear

at order e−S0 = e−8π2/(g2N) in the semi-classical e−S0 expansion) induce a certain chiral

condensate. However, the topological excitations responsible for the existence of mass gap

of the dual photon and thus for confinement are the magnetic bions with vanishing index,

which appear at order e−2S0 . The index theorem on R3 × S1 should help us identify both

classes of non-perturbative topological excitations for any gauge theory.

The non-perturbative semi-classical analysis provides reliable information about the

gauge theory in the weak coupling regime. However, the semi-classical treatment does

not extend over to the large radius, strong coupling regime, where the eigenvalues of A4

fluctuate rapidly, and there is no “Higgs regime” where the long-distance theory abelianizes.

In the partition function, we need to sum over all gauge inequivalent configurations. At

x = ∞, A4 field can acquire a profile consistent with the unbroken center symmetry, such

as (1.2). In fact, the boundary Wilson line (1.2) defines an isotropy group at infinity [1]:

GA4|∞ = {g ∈ G | gU(∞)g† = U(∞)}. For example, in low temperature pure Yang-

Mills theory, the isometry group is isomorphic to the maximal abelian subgroup, GA4|∞ ∼
Ab(G). This does not mean that a dynamical abelianization takes place in this regime,

nor semi-classical techniques apply. However, the index theorem for the Dirac operator

can be interpolated from R3 to R4. The index theorem is valid at any radius, regardless

of the value of the coupling constant.

Although the index theorem and topological excitations consistent with the isotropy

group GA4|∞ continue to exist in the large S1 strong-coupling domain, the semi-classical

techniques no longer usefully apply. Nonetheless, we believe that there is value in studying

the form of the topological operators, dictated by the appropriate index theorem, and at

least qualitatively study their dynamical effects. This is the goal of the recent “deforma-

tion program”.

1.2 Outline

We introduce our notation in section 1.3 below. In section 2, we begin the calculation

of the index. Our calculation can be thought of as a generalization of that of [8, 9], see

– 3 –
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also [10]. We show that the index on R3×S1 has two contributions — a topological charge

and surface term contribution.

In section 2.1, we first calculate the index for static monopole backgrounds. The surface

term contribution, section 2.1.1, is expressed in terms of the η-invariant of the boundary

Dirac operator, while the topological charge contribution is given in section 2.1.2. The

final formula for the index in the “static” background is eq. (2.32) for the fundamental of

SU(N) and eqs. (B.1), (B.4) from appendix B for other representations. The calculation of

the index in a Kaluza-Klein (“winding”) monopole background is given in section 2.2, with

the result for the fundamental of SU(N) in (2.44), and in (B.7) for general representations.

We note that an expression for the index on R3 × S1 similar to ours — given in terms

of the topological charge and the η-invariant — can be extracted from the appendix of

ref. [13]. The contribution of this paper consists of: a.) a derivation of the index accessible

to physicists along the lines given in the physics literature for R3 and by using exact

operator identities valid on any four-manifold and b.) a calculation of the index in specific

backgrounds and a discussion of its jumps — properties which are of interest for concrete

quantum field theory applications.

In section 3, we discuss in some more detail the index for the three lowest representa-

tions of SU(2) and the fundamental of SU(N). We explain the jumps of the index which

occur as the ratio of boundary holonomy to the size of S1 is varied.

In section 4, we explain the relation to the Callias [11] and APS [12] indices.

In section 5, we consider the generation of fermion-loop induced Chern-Simons terms

on R3 ×S1. We show when Chern-Simons terms are induced and how their coefficients are

quantized. We consider the effect of turning on of discrete Wilson lines for background fields

gauging anomalous flavor symmetries (similar effects are known from the string literature).

The resulting Chern-Simons terms have a profound effect on the phase structure of the

theory on R3 × S1.

Finally, appendix A contains another calculation of the η-invariant. In appendix B,

we give formulae for the index for general representations.

1.3 Notation

We take the four-dimensional Euclidean Dirac operator of a vector-like fermion in the

representation R to be:

D̂ ≡ γµDµ, Dµ ≡ ∂µ + iAa
µT

a . (1.3)

We use hermitean T a’s, obeying Tr T aT b = T (R)δab, taking T(fund.)= 1/2 for SU(N).

To further set and check notation, note that we use, in a given representation, ψ → Uψ,

Aµ → UAµU
†−iU∂µU

† under gauge transformations, hence Fµν = ∂µAν−∂νAµ+i[Aµ, Aν ].

Roman indices run from 1 . . . 3, while Greek indices span 1 . . . 4; the x4 ≡ y direction is

periodic, y ≡ y + L. The hermitean Euclidean γ-matrix basis we use is:

γk = σ1 ⊗ σk , γ4 = −σ2 ⊗ σ0 , γ5 = σ3 ⊗ σ0 , (1.4)

where σk are Pauli matrices and σ0 is the unit matrix. The vector-like Dirac opera-

tor (1.3) is:

D̂ =

(

0 σkDk + iσ0D4

σkDk − iσ0D4 0

)

≡
(

0 −D†

D 0

)

. (1.5)

– 4 –
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In the above equation, we defined the 2×2 Weyl operator D, obeying:

D†D = −DµDµ + σm 1

2
ǫmklFkl + σkF4k = −DµDµ + 2σmBm (1.6)

DD† = −DµDµ + σm 1

2
ǫmklFkl − σkF4k = −DµDµ . (1.7)

Here, Dµ is as defined in (1.3), and we assumed, without loss of generality, that the

background of interest is anti self-dual, namely that F4k = 1
2ǫkpqFpq ≡ Bk (all expressions

can be easily generalized for self-dual backgrounds). In this paper, we will use “Tr” to

denote traces of operators over spacetime as well as spinor indices, while “tr” will refer to

traces over spinor indices only.

We are interested in computing the index of the Dirac operator in topologically non-

trivial backgrounds on R3 × S1, generalizing the R3 result of [11]. The simplest example

of a nontrivial background is given by the three-dimensional SU(2) Prasad-Sommerfield

(PS) solution of unit magnetic charge, embedded in R3 × S1. The other backgrounds on

interest can be constructed by taking superpositions of the fundamental monopoles and

other solutions, obtained by non-periodic “gauge” transformations.

The PS solution is “static” (i.e. y-independent) and the A4-component of the gauge

field plays the role of the Higgs field. For example, consider the anti self-dual solution,

which obeys F4k = −1
2ǫ4kpqFpq = 1

2ǫkpqFpq ≡ Bk. In our conventions and in regular

(“hedgehog”) gauge, the SU(2) solution reads:

A4 = Aa
4(r, v) T

a = r̂af(r, v) T a , Aj = Aa
j (r, v) T

a = ǫjbar̂
bg(r, v) T a , (1.8)

where r̂a = ra

r and:

f(r, v) =
1

r
− v coth vr , g(r, v) = −1

r
+

v

sinh vr
. (1.9)

The asymptotics of the Bk, A4 fields of the PS solution at infinity are:

A4

∣
∣
∞ = −v r̂aT a

(

1 − 1

vr
+ . . .

)

Bk

∣
∣
∞ =

r̂k

r2
r̂aT a + . . . , (1.10)

where dots denote terms that vanish as e−vr. To cast the solution in string gauge, we need

to gauge transform r̂aT a → T 3. The asymptotics of A4 and Bk in string gauge are obtained

from (1.10) by replacing r̂aT a with T 3, for example the asymptotics of SU(2)-holonomy is

A4|∞ = 1
2diag(−v, v).

For the applications we have in mind, we want to also consider monopole solutions of

SU(N). The SU(2) PS solution considered above can be embedded in SU(N) as described

in [9]. For simplicity, we will use the fundamental generators of SU(N) to describe the

embedding (a description of the embedding using roots and weights can be also given,

see [9]; however, we find that for our purposes using N ×N matrices is both sufficient and

illuminating). The general form of the asymptotics of the Higgs field A4 is:

A4

∣
∣
∞ = diag(v̂1, v̂2, . . . v̂N ) ,

v̂1 < v̂2 < . . . < v̂N ,

N∑

i=1

v̂i = 0 (1.11)

– 5 –
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where, without loss of generality, we have ordered the eigenvalues as in our SU(2) example

(for example, eq. (1.10) corresponds to taking v̂1=−v̂2=−v
2). A background with an ad-

ditional overall U(1) “Wilson line” a0, often also called “real mass” term (when fermions

are included), allows the holonomies v̂j to be more general:

v̂j → v̂j +
1√
2N

a0, (1.12)

where we also normalized the overall U(1) generator multiplying a0 to Tr T 2 = 1/2. In-

cluding a non-vanishing a0 can be used to incorporate different boundary conditions for

the fermions in all our formulae.

The asymptotic form of the U(N) holonomy (1.11), (1.12) admits N types of elemen-

tary monopoles; N -1 of these are associated with the positive simple roots αi of the SU(N)

Lie algebra, for which:

αi ·H =
1

2
diag(0, . . . , 1

︸︷︷︸

i

, −1
︸︷︷︸

i+1

, . . . , 0), i = 1, . . . N − 1 , (1.13)

where H = (H1, . . . ,HN−1), where Ha denote the Cartan generators of SU(N). The

Cartan generators and simple roots are normalized as Tr HaHb = 1
2δ

ab, αi · αj = δi,j −
1
2δi,j±1. The N th type of fundamental monopole arises due to compactness of the “Higgs”

field A4, and is associated with the “affine” root:

αN · H ≡ −
N−1∑

j=1

αj · H =
1

2
diag(−1, 0, 0, . . . , 1) . (1.14)

A monopole solution corresponding to the ith simple root (1.13) of SU(N) can be

constructed from (1.10) as follows. First, rewrite the holonomy (1.11):

A4

∣
∣
∞=diag(v̂1, v̂2, . . . , v̂i−1, V︸︷︷︸

i

, V
︸︷︷︸

i+1

, v̂i+2, . . . , v̂N )+
1

2
diag(0, 0, . . . , 0, −Ṽ

︸︷︷︸

i

, Ṽ
︸︷︷︸

i+1

, 0, . . . , 0) ,

(1.15)

where V = 1
2(v̂i+1 + v̂i) and Ṽ = v̂i+1− v̂i. We now diagonally embed the SU(2) generators

τa into SU(N), such that their only nonzero elements are equal to one-half the Pauli

matrices embedded in a 2× 2 square along the diagonal of the N ×N matrices (thus, their

diagonal elements are the ith and i+1th ones singled out in (1.15)). With this embedding

it is easy to explicitly verify that:

A4 = r̂af(r, Ṽ )τa + diag(v̂1, v̂2, . . . , v̂i−1, V︸︷︷︸
i

, V
︸︷︷︸

i+1

, v̂i+2, . . . , v̂N ) ,

Am = ǫmbar̂
bg(r, Ṽ )τa , (1.16)

with f(r, Ṽ ) and g(r, Ṽ ) defined in (1.9) solves the anti-self-duality condition F4k = Bk

inside SU(N). The large-radius asymptotics can be immediately read off (1.10) by replacing

T a with τa and inserting in (1.16).

– 6 –
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Finally, a collection of n1, n2, . . . , nN−1 fundamental monopoles of the type correspond-

ing to the 1st, 2nd, . . . , N−1th, respectively, simple root of SU(N), has an asymptotic

magnetic field which is the natural generalization of (1.10) and is given, in the string

gauge, by:

Bm
∣
∣
∞ =

x̂m

|x|2
N−1∑

i=1

ni (αi · H)

=
1

2

x̂m

|x|2 diag(n1, n2 − n1, . . . , nj − nj−1, . . . ,−nN−1) . (1.17)

The asymptotic form of the SU(N) holonomy is as in (1.11) and the string gauge asymp-

totics of the gauge field is best described in polar coordinates, with Aφ its only nonvanish-

ing component:

Aφ

∣
∣
∞ =

1 − cos θ

2
diag(n1, n2 − n1, . . . , nj − nj−1, . . . ,−nN−1) . (1.18)

The Kaluza-Klein monopole solution corresponding to the affine root (1.14) will be con-

structed in section 2.2.

2 The index for Dirac operator on R3
× S1

We define the Callias index of a Weyl fermion (with equation of motion Dψ = 0 and D

defined in (1.5)) in the representation R on S1 ×R3 as in [8, 11]:

IR = lim
M2→0

Tr
M2

D†D +M2
− Tr

M2

DD† +M2
. (2.1)

This is the definition most convenient for explicit calculations, despite the fact that in

the locally four dimensional case of interest an additional regularization will be required,

having to do with the need to perform the sum over the Kaluza-Klein tower implicit in (2.1).

Nonzero discrete eigenvalues do not contribute to the formal expression (2.1) — if ψ is an

eigenfunction of D†D with a nonzero eigenvalue, Dψ is an eigenfunction of DD† with

the same eigenvalue and so their contributions to the trace cancel — hence IR counts the

number of zero modes of D minus the number of zero modes of D†; the continuous spectrum

also does not contribute to (2.1) if all v̂j are different, see the discussion in the appendix

of ref. [8]. The arguments given there continue to hold on R3 × S1 and we will not repeat

them here — as will become clear from our results, IR of eq. (2.1) always yields an integer

value for finite action backgrounds on R3 × S1. Furthermore, we will show that the index

reduces to the Callias index in the appropriate limit and experiences discontinuous jumps,

which can also be explained physically, upon changing the ratio of the circumference of S1

(L) to the holonomies at infinity (v̂j) .

Using the operator D̂ from (1.5) and our notation for γ5 (1.4), we find that:

IR(M2) = Tr γ5
M2

−D̂2 +M2
= MTr γ5

D̂ +M

−D̂2 +M2
, (2.2)

– 7 –
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where the second identity is true because of cyclicity of trace and γ5D̂ = −D̂γ5. Finally

we can cancel the D̂ + M factor between numerator and denominator and arrive at the

expression we will actually use:

IR(M2) = MTr γ5
1

−D̂ +M
. (2.3)

In our study, we closely follow the derivation of the Callias index on R3 of ref. [8],

paying respect to the differences due to the locally four-dimensional nature of spacetime.

The main difference — apart from the already mentioned sum over Kaluza-Klein modes

— occurs in the very first step below and has to do with the fact that anomalies occur in

a locally four dimensional spacetime. To elucidate, we note that:

〈x
∣
∣
∣
∣

1

D̂ −M

∣
∣
∣
∣
y〉 = 〈ψ(x)ψ(y)〉 , (2.4)

where 〈. . .〉 denotes an expectation value in a Euclidean quantum field theory of a Dirac

fermion ψ,ψ with action −S = ψ(−D̂+M)ψ. For such theories in a locally four dimensional

background the following operator identity holds:

∂µJ
5
µ ≡ ∂µ(ψγµγ5ψ) = −2Mψγ5ψ − T (R)

8π2
Ga

µνG̃
a
µν . (2.5)

The index (2.3), via (2.4), (2.5), can be rewritten as:

IR(M2) = −M Tr γ5〈ψψ〉 = M

∫

d3x

L∫

0

dy 〈ψγ5ψ〉

= −1

2

∫

S2
∞

d2σk

L∫

0

dy 〈J5
k 〉 −

T (R)

16π2

∫

d3x

L∫

0

dy Ga
µνG̃

a
µν , (2.6)

where we used periodicity of the current on S1 to argue that the integral of ∂y〈J5
4 〉 vanishes.

Eq. (2.6) is our main tool, allowing us to smoothly interpolate the index from R3 to R4 by

varying the size of the circle and the appropriate background. As a first simple check, take

the limit of an infinite L, i.e. R4, where eq. (2.6) becomes:

IR(M2) = −1

2

∫

S3
∞

d3σµ 〈J5
µ〉 −

T (R)

16π2

∫

d4x Ga
µνG̃

a
µν . (2.7)

This is the index theorem2 appropriate for a BPST instanton background (provided that the

surface term vanishes: that this is so follows from the fact that the surface contribution

in (2.7) could only be due to BPST fermion zero modes, as the nonzero modes vanish

exponentially at S3
∞ and so does their current; the fermion zero modes in an instanton fall

off as a powerlaw ψ0|x→∞ ∼ ρ
|x|3 , in nonsingular gauge [14]).

2To avoid (or add) confusion, recall that the index (2.1) for a fundamental Weyl fermion in an anti-

selfdual instanton should be +1, as it is D, in the notation of section 1.3, that has a normalizable zero

mode.
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Going back to R3 × S1, consider now the integral over S2
∞ × S1 in (2.6). We rewrite

the surface term in (2.6) as follows:

I1
R(M2) ≡ −1

2

∫

S2
∞

d2σk

L∫

0

dy 〈J5
k 〉 = −1

2

∫

S2
∞

d2σk

L∫

0

dy tr〈x
∣
∣
∣
∣
γkγ5

1

−D̂ +M

∣
∣
∣
∣
x〉 (2.8)

= −1

2

∫

S2
∞

d2σk

L∫

0

dy tr〈x
∣
∣
∣
∣

(

γkγ5D̂
1

−D̂2 +M2

)∣
∣
∣
∣
x〉 , (2.9)

where we performed the operations that led to eq. (2.3) in reverse. Further, from (1.5), the

expressions (1.6) for D†D and DD†, and the explicit form (1.4) of the γ-matrices, we have:

I1
R(M2) =

1

2

∫

S2
∞

d2σk

L∫

0

dytr〈x| σkσlDl

(
1

−D2
ν +M2 + 2σmBm

− 1

−D2
ν +M2

)

|x〉

−1

2

∫

S2
∞

d2σk

L∫

0

dytr〈x| iσkD4

(
1

−D2
ν +M2+2σmBm

+
1

−D2
ν +M2

)

|x〉 , (2.10)

and we recall that (2.10) is written for an anti self-dual background. The final formula for

the index which will be used in our further computations is:

IR(M2) = I1
R(M2) − T (R)

16π2

∫

d4x Ga
µνG̃

a
µν ≡ I1

R + I2
R , (2.11)

with I1
R defined in (2.10) and I2

R, the topological charge contribution to the index, in (2.11).

2.1 The index in a “static” BPS monopole background and Callias index

Consider first a 3d BPS “static” monopole background, independent on the S1 coordinate.

Physical intuition tells us that if we consider a small S1, hence weak coupling, we expect

the index on R3 ×S1 to be the same as that on R3 provided Lv ≪ 1, such that KK modes

do not influence physics at scales of order the size of the monopole. On the other hand,

one expects that when Lv ≫ 1, the index can differ from the one on R3. To study how

this expectation plays out in detail and under what conditions the index can jump, in the

following sections we successively evaluate the two contributions to the index (2.11).

2.1.1 Surface term contribution

To evaluate the contribution of the surface term (2.10), we note that at infinity the dom-

inant terms in the expansion of the operators appearing in I1
R(M2) in the static BPS

background are:

−D2
ν +M2 ≃ −∂2

m +M2 −D2
4, with − iD4 → 2πn

L
+A4 , (2.12)

where we used the string-gauge asymptotics of A4 (1.11) and Am (1.18). We now expand

the surface term contribution, recalling that Bm ∼ r−2, observing that only the second

– 9 –
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term in (2.10) contributes after the Pauli matrix traces are taken, and using (2.12):

I1
R(M2) = 2

L∫

0

dy

∫

S2
∞

d2σk tr 〈x; y
∣
∣
∣
∣
iD4

1

−∂2
m+M2−D2

4

Bk 1

−∂2
m+M2−D2

4

∣
∣
∣
∣
x; y〉 . (2.13)

Next, we substitute the asymptotic form for a “static” BPS solution, eq. (1.17), to obtain3

using (2.12) to replace iD4:

I1

R(M2)=−
∫

S2
∞

d2σk x̂k

|x|2
∞∑

p=−∞

N∑

j=1

(

v̂j +
2πp

L

)

(nj − nj−1)

∫
d3k

(2π)3
1

[
k2 +M2 + (v̂j + 2πp

L
)2
]2

.

(2.14)

After taking the three dimensional momentum and surface integrals (d2σk ≡ |x|2x̂k dΩS2),

as well as the M2 → 0 limit, the surface contribution to the index becomes:

I1
R(0) = −1

2

N∑

j=1

(nj − nj−1)

∞∑

p=−∞

v̂j + 2πp
L

|v̂j + 2πp
L |

. (2.15)

The Kaluza-Klein (KK) mode sum in (2.15) is a periodic generalization of the sign function,

which appears in the Callias index for gauge theories on R3 (upon taking L → 0 only the

p = 0 term contributes in the sum and so (2.15) reproduces the Callias index result, see

appendix B). Such a generalization is necessary, since on R3 × S1 the eigenvalues of the

“Higgs” field A4 are compact and the index should be a periodic function of the expectation

values of A4, with periodicity determined by the representation R.

The KK sum (2.15) can also be thought of as a sum of the indices of a KK tower of

three-dimensional Dirac operators, each that of a KK fermion of mass 2πp
L . The Callias

index theorem shows that for a given Higgs vev only a finite number of massive operators

in the KK tower have a nonvanishing index (essentially, those with |m| < O(|v|)), thus

only a few terms in the sum over indices of KK Dirac operators can contribute to the

index. While following this logic is a quick way to find our formula for the index for static

backgrounds, recall that there is also a non-integer topological charge contribution given

by the second term in (2.10), which should be cancelled by a corresponding non-integer

contribution to (2.15) to yield an integer value. Thus, to obtain a formula for the index

that works for general backgrounds [1], specified by the holonomy at infinity, magnetic

charge, and topological charge, we must regulate the sum over KK modes in (2.15).

For a given j, the KK sum is equal to ηj[0], the spectral asymmetry of the differential

operator hj = i d
dy + v̂j acting on the space of periodic functions f(y) = f(y + L). The

η-invariant is defined by analytic continuation from sufficiently large Re(s) > 0 of:

η[vj , s] ≡ ηj [s] ≡
∑

λ6=0

signλ

|λ|s , (2.16)

3Recall that n0 = nN = 0 is understood for the static solution.
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where λ are the eigenvalues of hj .
4 Thus the surface term contribution to the index is:

I1
R(0) = −1

2

N∑

j=1

(nj − nj−1) ηj[0] . (2.19)

To calculate ηj[0], begin with its definition (2.16), rescaling both numerator and denomi-

nator by 2π
L :

ηj[s] =

∞∑

p=−∞

sign
(

v̂jL
2π + p

)

| v̂jL
2π + p|s

=

∞∑

p=−∞

sign (âj + p)

|âj + p|s . (2.20)

We defined:

âj ≡
v̂jL

2π
−
⌊
v̂jL

2π

⌋

⊂ (0, 1) , (2.21)

having noted that since ηj is a periodic function of âj of unit period, by relabeling the KK

modes, we can take the argument to lie in the fundamental interval (0, 1). Here ⌊x⌋ is the

floor function:

⌊x⌋ = max{n ∈ Z | n ≤ x} , (2.22)

which denotes the largest integer smaller than x, and x̂ = x−⌊x⌋ is the fractional part of x.

It then follows that all terms in the sum (2.20) with p ≥ 0 are positive, while the ones

with p < 0 are negative, allowing us to write:

ηj[s] =
∑

p≥0

1

(âj + p)s
−
∑

p≥0

1

(p+ 1 − âj)s
= ζ(s, âj) − ζ(s, 1 − âj) , (2.23)

where ζ(s, x) is the incomplete zeta-function. Finally [15], since ζ(0, x) = 1
2 − x, we find

our final expression for ηj[0]:

ηj[0] =
1

2
− âj −

(
1

2
− (1 − âj)

)

= 1 − 2âj = 1 − 2
v̂jL

2π
+ 2

⌊
v̂jL

2π

⌋

. (2.24)

For another calculation of the η-invariant, see appendix A.

From (2.24), the surface term contribution (2.15) to the index for the fundamental

representation of SU(N) becomes:

I1
fund.(0) = −

N∑

j=1

(nj − nj−1)

(
1

2
− v̂jL

2π
+

⌊
v̂jL

2π

⌋)

. (2.25)

4 An equivalent way to to define the η-invariant is via its integral representation. Let H = i d
dy

+ A4.

Then,

η[H,s] ≡ tr
H

(H2)(s+1)/2
≡

1

Γ( s+1
2

)

Z ∞

0

dt t
(s−1)/2tr[He

−H2t] . (2.17)

This representation makes sense for large Re(s) > 0 and admits a holomorphic extension to the whole

complex plane. This discussion is completely parallel to much often encountered ζ function regularization,

for which:

ζ[H, s] ≡ tr[H−s] ≡
1

Γ(s)

Z ∞

0

dt t
(s−1)tr[e−Ht] . (2.18)
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2.1.2 Topological charge contribution

Consider now the second term in (2.11)—the topological charge contribution to the index,

which is well-known to be a surface term:

I2
R(0) = −2T (R)Q = −T (R)

16π2

∫

d3x

L∫

0

dy Ga
µνG̃

a
µν = −T (R)

16π2

L∫

0

dy

∫

S2
∞

d2σmKm , (2.26)

The topological current is:

Kµ = 4ǫµνλκtr

(

Aν∂λAκ +
2i

3
AνAλAκ

)

. (2.27)

In writing the surface integral in (2.26), we used the fact that for the static BPS background

Kµ is a periodic function of y. To evaluate (2.26) we note that the spatial component of

Kµ can be rewritten as:

Km = 4ǫmijtr (A4Fij −Ai∂4Aj − ∂i(A4Aj)) . (2.28)

Now we use ǫijkFjk = 2Bi and the fact that in the static anti self-dual BPS back-

ground (1.8), (1.10), assuming SU(2) for now, 8trA4Bm

∣
∣
∞ = −8v r̂m

r2 r̂
br̂ctrT bT c = −4v r̂m

r2 .

Thus, the only contribution to the surface integral (2.26) comes from the first term in Km,

yielding, for T (R) = 1/2:

I2
fund.,SU(2)(0) =

1

32π2
4πL 4v =

Lv

2π
. (2.29)

This is, of course, the known result for the negative of the topological charge of an anti

self-dual BPS monopole.

To obtain the SU(N) result in the multimonopole background, it is best to transform

the surface integral (2.26) to string gauge and use (1.11), (1.17). The singular nature of

the static gauge transformation does not change the periodicity of Kµ used in (2.26) and

does not affect the surface integral.5 Thus, for an arbitrary representation of SU(N) the

topological charge contribution to the index is:

I2
R(0) = −T (R)

16π2

L∫

0

dy

∫

S2
∞

d2σm8tr[A4Bm]

= −2T (R)

N∑

j=1

(nj − nj−1)
Lv̂j

2π
. (2.30)

2.1.3 The final expression for the index

Combining the two contributions to the index, eqs. (2.30) and (2.25), gives our final formula

for the index. Note that neither the topological charge contribution (2.30), nor the surface

term (2.25) is an integer. However, in the combined result, the non-integer parts coming

5Note that, with AU
µ =UAµU† − iU∂µU†, we have Kµ(AU) = Kµ(A) +

ǫµνλκ
`

4
3
tr(U∂νU† U∂λU† U∂κU†) + 4i ∂νtr(AλU†∂κU)

´

and the singular static gauge transformation

does not introduce a shift to Km.
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from the two cancel neatly. With some work, our expression can also be extracted from

the formulae in the appendix of [13]; it was derived here in a physicists’ manner by using

eq. (2.5), the axial-current non-conservation which is an exact operator identity valid on

any 4-manifold. In this respect, our derivation is a natural generalization of [8].

For the fundamental representation of SU(N), adding (2.30) to (2.25), the index is:

Ifund.(n1, n2, . . . , nN−1) = −
N∑

j=1

(nj − nj−1)

(
1

2
+

⌊
Lv̂j

2π

⌋)

,

= −
N−1∑

j=1

nj

(⌊
Lv̂j

2π

⌋

−
⌊
Lv̂j+1

2π

⌋)

, (2.31)

where in the first line, as usual nN = n0 = 0.

It is fairly easy to extract the Callias index theorem from (2.31). Let us restrict

−π < Lv̂j < π for all j. Then, 1
2 +

⌊

Lv̂j

2π

⌋

= 1
2sign (v̂j) and (2.31) reduces to:

Ifund.(n1, n2, . . . , nN−1) = −1

2

N∑

j=1

(nj − nj−1) sign (v̂j) = nj∗, (2.32)

where v̂j∗ < 0 < v̂j∗+1 and we used the the ordering of the holonomies’ eigenvalues,

eq. (2.32). In other words the fundamental representation fermion zero mode localizes at

the j∗th fundamental monopole, the known Callias index result.

2.2 The index in a “winding” BPS-KK monopole background

Another class of solutions that is crucial for describing the nonperturbative dynamics for

nonzero L are the Kaluza-Klein monopoles, arising because of the compact nature of the

“Higgs” field [16, 17]; see [18] for a semiclassical calculation elucidating their role in super-

symmetric gluodynamics.

Let us recall the construction of the KK monopole solution corresponding to the

“affine” root (1.14) of the SU(N) Lie algebra. We will construct the solution in anal-

ogy with the simple root monopoles given in section 1.3. To begin, note that we can

rewrite the holonomy (1.11) as follows:

A4 = −Ṽ τ3 + diag(V, v̂2, . . . , , . . . , v̂N−1, V ) , (2.33)

where now V = 1
2(v̂N + v̂1) and Ṽ = v̂N − v̂1. We take an SU(2) embedding in SU(N) via

τ1,2,3 as:

(τ1)ij =
1

2
(δi1δjN + δiNδj1), (τ2)ij =

1

2
(−iδi1δjN + iδiNδj1),

(τ3)ij =
1

2
(δi1δj1 − δiNδjN ), i, j =1, . . . , N. (2.34)

Clearly, the static self-dual monopole solution is, in complete analogy with the simple-root

solutions (1.16):

A4 = r̂af(r, Ṽ )τa + diag(V, v̂2, . . . , v̂N−1, V ) ,

Am = ǫmbar̂
bg(r, Ṽ )τa . (2.35)
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In the class of static solutions (2.35) is not a fundamental monopole but can be thought

as a composite of the fundamental solutions based on simple roots. However, in theories

with compact Higgs fields it can be used to construct the Kaluza-Klein monopole. To

begin, note that the non-periodic “gauge transformation,”6 defined via our fundamental

SU(2) generator τ3 embedded in SU(N) as described above:

U1(y) = e−i 2πy
L

τ3
= diag(e−i πy

L , 1, . . . , 1, ei
πy
L )

U1(y + L) = diag(−1, 1, . . . , 1,−1) U1(y) (2.36)

transforms periodic adjoint fields into periodic fields. At the same time, the asymptotic

value of A4 is shifted by U1(y):

AU1
4 = A4 +

2π

L
τ3 = −

(

Ṽ − 2π

L

)

τ3 + diag(V, v̂2, . . . v̂N−1, V ) . (2.37)

To construct the affine KK monopole, one starts with the static monopole solution (2.35)

in a vacuum (2.33) with Ṽ replaced by Ṽ ′ = 2π
L − Ṽ . Denote by Aµ(Ṽ ′), µ = (4,m),

the just described solution (2.35) in a vacuum given by Ṽ → Ṽ ′. Then one defines the

field configuration:

AKK
µ (Ṽ ) = U2

(

Aµ(Ṽ ′)
)U1

U †
2 = U2U1

(

Aµ(Ṽ ′) − i∂µ

)

U †
1U

†
2 . (2.38)

Here U2 is essentially the unit matrix except for its 11, NN , 1N , and N1, elements,

explicitly:

U2 ≡












0 1

1

1

. . .

1

−1 0












. (2.39)

The point of (2.38) is that transformingAµ(Ṽ ′) with U1 leads to a twisted (i.e. y-dependent)

solution in the vacuum with asymptotics given by (2.33) with Ṽ replaced by Ṽ ′ − 2π
L =

−Ṽ . The role of the U2 transformation acting on A4 is to flip the sign of Ṽ and thus

generate a solution in the desired vacuum (2.33). The A4 asymptotics of the KK monopole

solution AKK
µ is thus the desired (2.33), while the B-field flips sign at infinity due to the

U2 conjugation. Thus the KK monopole solution has magnetic charge opposite that of the

corresponding anti self dual solution — its magnetic charge given by the affine root (1.14)

and asymptotics (for nN copies of the solution):

Bm
KK

∣
∣
∞ = −nN

x̂m

|x|2
N∑

i=1

(αi · H)

=
nN

2

x̂m

|x|2 diag(−1, 0, . . . , 0, . . . , 1) . (2.40)

6We use quotation marks as fields related by (2.36) are not on the same gauge orbit.
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To find the topological charge of the KK monopole, eq. (2.38) plus gauge covariance

of the field strength allow us to argue that:

Q =
1

32π2

∫

d3xdyGa
µνG̃

a
µν

[

AKK(Ṽ )
]

=
1

32π2

∫

d3xdyGa
µνG̃

a
µν

[

APS(Ṽ ′)
]

=
L

4π2

∫

S2
∞

d2σmtrA4(Ṽ
′)Bm

PS = −nN
Ṽ ′L
2π

= −nN

(

1 − Ṽ L

2π

)

, (2.41)

the calculation in complete analogy with (2.30), using the asymptotics of A4, eq. (2.33)

with Ṽ → Ṽ ′, and of Bm
PS = −Bm

KK of (2.40). Thus, remembering from eq. (2.26) that

I2
R = −2T (R)Q, we obtain that for nN KK monopoles, the topological charge contribution

to the index is:

I2,KK
R (0) = 2T (R) nN

(

1 − Ṽ L

2π

)

. (2.42)

The computation of the surface term I1
R(0) is also simplified by the fact that the asymp-

totics of the KK monopole solution at infinity are x4 independent and are, as explained

above, the same as those for the PS monopole, except for a switch in the sign of the magnetic

field. Thus, despite the fact that in the “bulk” the solution is twisted around S1, we can still

use (2.13) to calculate the surface term contribution. Substituting eqs. (2.40) and (1.11)

into (2.13), we obtain for the fundamental representation of SU(N), instead of (2.25):

I1,KK
fund. (0) = nN

(

Ṽ L

2π
−
⌊
v̂NL

2π

⌋

+

⌊
v̂1L

2π

⌋)

. (2.43)

Combined with (2.42), this gives for the total index of the KK monopole:

IKK
fund.(0) = nN

(

1 −
⌊
v̂NL

2π

⌋

+

⌊
v̂1L

2π

⌋)

. (2.44)

In the case where for all j the holonomies obey |v̂j | < π
L , taking into account our ordering

of the holonomy (1.11) (v̂1 < 0, v̂N > 0), we have, for nN = 1, that IKK
fund = 0. Recall

from the discussion around eq. (2.32) that in the background of n1, n2, . . . , nN−1 monopoles

corresponding to the 1st, 2nd, etc., simple roots there are nj∗ fermionic zero modes, where

j∗ is the position of the last negative v̂j from (1.11). Thus, the combination of a nj∗ = 1

monopole and an nN = 1 KK monopole have a combined number of zero modes equal to

that of a four-dimensional BPST (anti) instanton (one for the fundamental of SU(N)); the

sum of their topological charges also adds to minus one.

At this stage, we can also combine (2.31) and (2.44) into a single formula:

Ifund.[n1, n2, . . . , nN−1, nN ] = Ifund.(n1, n2, . . . , nN−1) + IKK
fund.(nN )

= nN −
N∑

j=1

nj

(⌊
Lv̂j

2π

⌋

−
⌊
Lv̂j+1

2π

⌋)

. (2.45)

where Lv̂N+1 ≡ Lv̂1.
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3 SU(2) with arbitrary representation fermions

The calculation of the index is particularly simple for arbitrary representations of SU(2).

Consider, for example, a Weyl fermion in the spin-j representation of SU(2) in the static

BPS background. The asymptotic form of the A4 and magnetic fields are:

A4|∞ = −v (T 3)j = −v diag (j, j − 1, . . . ,−j), Bm
∣
∣
∞ =

x̂m

|x|2 (T 3)j , (3.1)

where we set n1 = 1 for simplicity. The index receives contribution from the surface

term (2.15) and topological charge (2.26). Instead of (2.15), we now have:

I1
j (0) = −

j
∑

m=−j

m

∞∑

p=−∞
sign

(

−vm+
2πp

L

)

, (3.2)

where the minus sign in the sign-function is because in our convention the holonomy at

infinity is A4 ≃ −vT 3. We perform the KK sum in a way similar to (2.24) to obtain:

I1
j (0) =

j
∑

m=−j

−m2vL

π
− 2m

⌊

− vmL

2π

⌋

. (3.3)

For the topological charge contribution, we can use the first line of (2.30) and following

the steps that led to (2.29), we obtain:

I2
j (0) = 2T (j)

Lv

2π
. (3.4)

Recall that for the spin-j representation of SU(2), the Casimir is given by T (j) =
j∑

m=−j
m2 =

1
3j(j + 1)(2j + 1). Therefore, summing over the two contributions (3.3) and (3.4) to the

index, we find:

Ij(0) =

j
∑

m=−j

2m

(

−mvL
2π

−
⌊

− mvL

2π

⌋)

+ 2T (j)
Lv

2π
= −

j
∑

m=−j

2m

⌊

− mvL

2π

⌋

. (3.5)

The relation between the index for the BPS monopole and KK monopole is also espe-

cially simple in SU(2), where there are only two kinds of monopoles; in the spin-j repre-

sentation the index in the KK monopole background can be obtained by using techniques

of the section (2.2), with the result:

IKK
j = 2T (j) − Ij (3.6)

where Ij is the index of the j-representation in the monopole field and 2T (j) is the number

of zero modes in a BPST instanton background.

Let the number of monopoles and KK monopoles in a given background be, respec-

tively, n1 and n2. The main result of this section is captured in the index and the topological

charge formulae:

Ij[n1, n2] = n1Ij + n2I
KK
j = n22T (j) − (n1 − n2)

j
∑

m=−j

2m

⌊

− mvL

2π

⌋

,

Q[n1, n2] = n1Q
BPS + n2Q

KK = −n2 + (n2 − n1)
vL

2π
. (3.7)
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We consider now as an example the three lowest representations of SU(2). We already

discussed the fundamental representation of SU(N). In the appendix, we give expressions

for other SU(N) representations of interest.

Index for the fundamental (j = 1/2). We have, from (3.5):

I1/2(0) = −
⌊

− vL

4π

⌋

+

⌊
vL

4π

⌋

. (3.8)

Begin with the case 0 < v < 4π
L , when we obtain I1/2 = 1. That this is so can be easily

verified by explicitly solving the zero mode equation for the Weyl operator D in the PS

background [19]. This is also the result of the Callias index theorem on R3, as expected on

physical grounds when L is small and the scale v of SU(2)-breaking is below the KK scale.

Upon increasing v, taking 4π
L < v < 8π

L , we have I1/2 = 3. More generally, eq. (3.8) im-

plies that the index jumps by two every time v crosses another 4π
L threshold. This jump of

the index occurs because every time v increases by 4π
L , two zero-mode solutions with nonva-

nishing KK number become normalizable. This jump of the index can be easily seen explic-

itly by considering the normalizability of the zero-mode solutions of the D(A)ψ = 0 Weyl

equation in the static PS background on S1×R3, along the lines of the appendix of ref. [9].

Index for the adjoint (j = 1). Now we have from (3.5):

I1(0) = −2

⌊

− vL

2π

⌋

+ 2

⌊
vL

2π

⌋

. (3.9)

Begin with 0 < v < 2π
L , where I1(0) = 2, the well-known value in three dimensions. As we

increase 2π
L < v < 4π

L , we obtain I1(0) = 6. Thus, the index jumps by 4 every time v crosses

a KK threshold. Again, this is because as v passes beyond 2π
L every L = 0 normalizable

zero mode acquires two more normalizable KK partners.

Index for three-index symmetric tensor (j = 3/2). Our final example is the three-

index symmetric tensor (j = 3/2 of SU(2)). This representation alone is free of a Witten

anomaly and gives an example of a chiral four-dimensional theory with interesting non-

perturbative dynamics. The index of the representation is T (3/2) = 5. For this case (3.5)

implies that the index is:

I3/2(0) = −3

⌊

− 3vL

4π

⌋

−
⌊

− vL

4π

⌋

+ 3

⌊
3vL

4π

⌋

+

⌊
vL

4π

⌋

. (3.10)

For 0 < v < 4π
3L , where I3/2(0) = 4, as on R3. As v increases across the first KK threshold

to 4π
3L < v < 8π

3L , we have I3/2 = 10—a jump of the index by 6. As v crosses the next

threshold 8π
3L < v < 4π

L , we similarly find that the index jumps by 6, giving I3/2(0) = 16.

Similarly to the previous cases, the jumps are interpreted as due to more KK-fermion zero

modes becoming normalizable as v increases through each threshold.
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4 Interpolating from Callias to APS index

It is useful to put together the results for the index theorem on R3 × S1 and see how

it interpolates between the Callias index theorem on R3 and the APS index theorem on

R4. This will also provide a crisp notion of an elementary versus composite topological

excitation on R3 × S1. In order to study these excitations, it is useful to recall some basic

facts about the root system of a Lie algebra and the distinction between the simple root

system and affine root system.

For a given Lie algebra, we can construct all roots ∆, positive roots ∆+, and simple

positive roots ∆0, satisfying ∆ ⊃ ∆+ ⊃ ∆0. For example, all roots in ∆+ can be written

as positive linear combinations of simple roots which constitute ∆0:

∆0 = {α1, . . . , αN−1} , (4.1)

where αi areN−1 linearly independent simple roots. The simple root system is useful in the

discussion of the elementary static monopoles, and the discussion of index theorems on R3.

On R3 × S1, there is an extra monopole, the KK-monopole, which is on the same

footing with the monopoles. The existence of this extra topological excitation is significant

in multiple ways. For example, as it will be seen below, one can only construct the four

dimensional BPST instanton out of the “constituent monopoles” due to the existence of the

KK monopole. Incorporating the KK-monopole into the set of “elementary” monopoles

also has a simple realization in terms of Lie algebra. There is a unique extended root

system (or extended Dynkin diagram) for each ∆0, which is obtained by adding the lowest

root to the system ∆0:

∆0
aff = ∆0 ∪ {αN} ≡ {α1, . . . , αN−1, αN} (4.2)

Let n1, . . . , nN denote the number of elementary monopoles whose charges are propor-

tional to α1, . . . , αN ∈ ∆0
aff , respectively. The Callias index on R3, for sufficiently small

|v̂jL|, is equal to the index of the Dirac operator on R3 × S1 for elementary monopoles

with charges taking values in the simple root system ∆0, i.e.:

IR3 [n1, . . . , nN−1, 0] = IR3×S1[n1, . . . , nN−1, 0] . (4.3)

This is already demonstrated in obtaining (2.32) from (2.31) by using |v̂jL| ≤ π.

We now discuss the relation between the APS index for the BPST instanton and the

index theorem on R3 × S1. The result is:

Iinstanton = IR3×S1[1, 1, . . . , 1, 1] =
N∑

i=1

IR3×S1 [0, . . . , 1
︸︷︷︸

ith

, . . . , 0] (4.4)

The proof of this statement necessitates a convenient rewriting of the index for the “static”

(2.31) and “winding” (2.43) solutions. The important technical detail to keep in mind is

that for static solutions (2.31), we set n0 = nN = 0. The index formula for [n1, . . . , nN ]

monopoles takes the simple form:

Ifund.[n1, . . . , nN ] = nN −
N∑

j=1

nj

(⌊
Lv̂j

2π

⌋

−
⌊
Lv̂j+1

2π

⌋)

. (4.5)
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We also need to show that the topological excitation for which [n1, . . . , nN ] = [1, . . . , 1]

corresponds to the BPST instanton. It is obvious that the magnetic charge of such an

excitation is identically zero,
∑N

i=1 αi = 0. We also need to show that the topological

charge adds up to the one of a BPST instanton. Using formula (2.30) for static BPS

monopoles (and setting n0 = nN = 0 therein) and (2.41) for the KK monopole, we obtain

the topological charge of the excitation:

Q[n1, . . . , nN ] = −nN +

N∑

i=1

ni

(
Lv̂i

2π
− Lv̂i+1

2π

)

. (4.6)

For [n1, . . . , nN ] = k[1, . . . , 1], the topological charge is integer valued with no dependence

on the specific values of vi. This is indeed the instanton with winding number k. For index

theorem aficionados, eq. (4.4) can also be expressed as:

dim ker /Dinst − dim ker /D
†
inst =

∑

αi∈∆0
aff

(

dim ker /Dαi
− dim ker /D

†
αi

)

. (4.7)

It is evident that the index for Dirac operators on S1 ×R3 has more refined data than the

familiar APS index theorem for instantons on R4 .

Remark on some special cases. In the derivation of the index theorem for the

Dirac operator in the background of a monopole, we used the local axial-current non-

conservation (2.5), which is an exact operator identity valid on any four-manifold, and a

certain boundary Wilson line A4|∞ (1.11). In fact, the index is only well-defined for invert-

ible A4|∞. In this case, the corresponding Dirac operator is called a Fredholm operator.

An eigenvalue of A4|∞ can always be rotated to zero by turning on an over-all Wilson line

as in (1.12), which corresponds to a non-Fredholm operator. In those cases, the index for

the monopole as well as the η-invariant are not well-defined.

What happens physically as the overall U(1) Wilson line is dialed? In that case, in

eq. (4.5), we replace v̂j → v̂j + 1√
2N
a0 following eq. (1.12). As a0 is dialed smoothly, the

fermionic zero mode will jump from the monopole it is localized into (say, with charge αj∗)
to a monopole which is nearest neighbor, αj∗±1, depending on the sign of the a0. In the

mean time, note that the index for the BPST instanton Iinstanton = IR3×S1 [1, 1, . . . , 1, 1] in

eq. (4.4) should remain invariant. As the normalizable zero mode jumps from αj∗ to αj∗±1,

exactly at the value of a0 where one of the eigenvalues becomes zero, a non-normalizable

zero mode appears and the exponential decay of the zero mode wave function is replaced

by a power law decay of the three dimensional massless fermion propagator.

5 Remarks on anomalies and induced Chern-Simons terms on R3
× S1

Consider a chiral four-dimensional gauge theory compactified on R3 × S1. In the limit of

zero radius, one expects that a generic theory on R3 with complex-representation fermions

will violate three dimensional parity. This is because the R3 theory can not be regulated

by Pauli-Villars (PV) fields in a simultaneously parity- and gauge-invariant manner.

For example, in the SU(5) theory with left-handed Weyl fermions in the 5 and 10∗,

compactified to R3, four-dimensional Lorentz and gauge invariance would forbid mass
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terms for the fermions, but on R3 real mass terms are allowed. Real mass terms in three

dimensions can be thought of as expectation values of the A4 (Wilson line) components

of background U(1) gauge fields gauging global chiral symmetries. These mass terms are

gauge invariant but break three dimensional parity. On R3, one can regulate the theory

in a gauge invariant manner via real-mass Pauli-Villars fields in the 5 and 10∗. It is a

well-known result [20] that every PV regulator gives rise to a Chern-Simons (CS) term,

proportional to the index of the representation (1/2 for 5 and 3/2 for 10∗) and to the

sign of its mass. Thus, at one loop, the fermion effective action has a parity-violating CS

term, whose coefficient is 1 or 2, depending on the chosen relative sign of the two PV mass

terms. This CS term does not give rise to a “parity anomaly,” which would require the

addition of a gauge-noninvariant bare half-integer coefficient CS term, since the integer

coefficient assures its invariance under gauge transformations with nontrivial π3(G) (for a

brief reminder of the quantization of the CS coefficient, see the footnote in the beginning

of section 5.1). However, it gives a topological mass term to the gauge boson. If a bare CS

term with integer coefficient is added, the CS coefficient becomes a free parameter of the

three dimensional “chiral” gauge theory. When the gauge group is broken to its maximal

Abelian subgroup (by an adjoint Higgs field, as in the applications we have in mind) this

will give rise to CS terms with quantized coefficients for the various U(1).

5.1 Loop-induced Chern-Simons terms on R3 × S1

Now, consider the same theory on the locally four-dimensional background R3 × S1. PV

regulators with complex masses are not allowed by gauge invariance, while a real mass due

to a Wilson-line expectation value is neither local nor Lorentz invariant. Hence, we are

led to reconsider the calculation of the CS term, this time on R3 × S1. We would like to

know whether such a term is generated and what the freedom in the CS coefficient found

in the R3 case corresponds to on R3 ×S1. Our main interest is in the case when the gauge

group is broken to its maximal Abelian subgroup by the nontrivial holonomy on S1. Thus,

consider the loop-induced CS coefficient kab:

SCS =

∫

d3x
kab

8π
ǫlim Aa

l ∂i A
b
m , (5.1)

where a and b run over the Cartan generators of the gauge group.7 A straightforward loop

calculation of kab in the background holonomy A4 gives:

kab =

∞∑

n=−∞

∫
d3k

π2
tr T a 1

k2 + (A4 + 2πn
L )2

T b (A4 + 2πn
L )

k2 + (A4 + 2πn
L )2

= tr T aT b
∞∑

n=−∞
sign

(

A4 +
2πn

L

)

, (5.2)

7Recall that in the nonabelian case, SCS =
R

d3x k
4π

ǫlimtr(Al∂iAm + 2i
3

AlAiAm), where the trace is in

the fundamental, and that k is quantized. To see this, let U(x) denote a gauge rotation for which π3(G)

is non-trivial, i.e,
R

1
24π2 ǫνλκtr[U∂νU† U∂λU† U∂νU†] ≡

R

ω(x) ∈ Z. Under a gauge transformation, the

variation of the action is given in footnote (5) and yields SCS(AU) = SCS(A) + i(2πk)
R

ω(x), in Euclidean

space, showing that gauge invariance of the partition function demands quantization of k.
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where a sum over all fermion matter representations is understood in the trace. To obtain

the second equality we noted that all generators above are in the Cartan and took the

momentum integral, leading to a KK sum identical to the one appearing in (2.15). Finally,

we regulate the sum via ζ-function as in the calculation of the η-invariant, and obtain:

kab = tr T aT b η[A4, 0] = tr T aT b

(

1 − 2
LA4

2π
+ 2

⌊
LA4

2π

⌋)

, (5.3)

where the function ⌊. . .⌋ is applied to each element of the diagonal matrix A4. To further

understand (5.3), note that if8 |A4| < π
L , we have 1 − 2L A4

2π + 2

⌊

LA4
2π

⌋

= −2LA4
2π + signA4,

and that after inserting this in (5.3) and using kab = kba, we find:

kab = −tr({T a, T b}A4)
L

2π
+ tr(T aT bsignA4) . (5.4)

To understand the meaning of the two terms in (5.4), we now use the decomposition

of the sign matrix sign(A4) in each representation R in terms of the unit matrix and

Cartan generators:

sign(A4R) = s01 +

r∑

c=1

scT c, s0 =
1

dim(R)
trR[sign(A4)], sa =

1

T (R)
trR[sign(A4)T

a] ,

(5.5)

and a similar decomposition for the holonomy A4 itself:

A4L

2π

∣
∣
∣
∣
R

= a01 +

r∑

c=1

acT c, a0 =
L

2πdim(R)
trR[A4], ac =

L

2πT (R)
trR[A4T

c] . (5.6)

After inserting these in (5.4), we find:

kab =
∑

R

[

trR
(

{T a, T b}T c
)

(sc − ac) + T (R)δab(s
0 − a0)

]

. (5.7)

If A4 is entirely in the Cartan subalgebra of the gauge group, then a0 = 0. Furthermore, if

the sign matrix is traceless (s0 = 0)—which is the case for SU(2N) theories with a center

symmetric background — we find that the CS coefficient on R3 ×S1 is proportional to the

coefficient of the gauge anomaly in four dimensions (recall that the anomaly coefficient for

a representation R is trR
(
{T a, T b}T c

)
). In this case, we find that for anomaly-free chiral

gauge theories in four dimensions there is no loop induced CS term in three dimensions.

It can happen that the sign matrix is not traceless, in which case the only contribution

to the CS term is from the second term in (5.4), proportional to tr signA4. For example,

in anomaly-free SU(2N + 1) gauge theories with an almost center symmetric holonomy,

while the first term in (5.4) vanishes, the second term in (5.4) may still be non-zero. In

such cases, one can tune a background Wilson line associated with an axial, non-anomalous

U(1) to isolate a point where CS-term vanishes (an example of this kind is SU(5) theory

with 5 and 10∗).

8If this condition is not obeyed, the following equations have to be modified accordingly, as was done in

the computation of the index.
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In conclusion, we find that the CS coefficient on R3×S1 receives two contributions. The

first is a “four-dimensional” one and is given by the first term in (5.4). If the only Wilson

lines that are turned on correspond to anomaly-free gauge and global symmetries, the con-

tribution of this term vanishes. On the other hand, turning on Wilson lines corresponding

to anomalous symmetries leads to a nonvanishing first term in (5.4)—its origin is in the four-

dimensional Wess-Zumino term induced when anomalous background fields are included

(the reason the calculation in the nontrivial holonomy phase is so simple is that breaking the

gauge symmetry and having massive fermions propagate in the loop allowed us to turn the

four dimensional Wess-Zumino term into a local three dimensional CS term). The second,

“three-dimensional,” contribution [20] is given by the second term in (5.4) and is nonzero

only if trR signA4

dim(R) generates an anomalous U(1) symmetry in the four-dimensional theory.

5.2 Excision of topological excitations and remnant Chern-Simons theories

In the beginning of this section, we found that in the three dimensional reduction of a four

dimensional chiral theory, there is freedom to have CS terms with quantized coefficients. Is

there similar freedom in the theory on R3 × S1? The answer can again be seen from (5.4).

In section 5.1, we assumed that the only Wilson lines turned on are those corresponding

to the Cartan generators of the gauge group. We are free, however, to turn on Wilson lines

of background U(1) fields gauging global chiral symmetries in four dimensions. These

Wilson lines do not break the gauge symmetry, but the symmetries they correspond to

are usually anomalous, hence we can use eq. (5.4) to infer the CS coefficient induced when

they are turned on. It is clear from (5.4) that, generally, the value of the CS coefficient

induced in the nonzero holonomy phase by these “flavor” Wilson lines would not correspond

to quantized values, unlike in three dimensions. However, recall that turning on Wilson

lines for global symmetries is equivalent, by a field redefinition, to imposing non-periodic

boundary conditions on the Weyl fermions in R,9

ψ(x, y + L)R = eiαRψ(x, y)R , αR = AR
4 L . (5.8)

Consequently, we find from (5.4), assuming that only a U(1) Wilson line, AR

4 , is turned

on, that:

kab = δab

∑

R

(

−2αR T (R)

2π
+ T (R) sign αR

)

≡ δab k(α). (5.9)

The induced CS term is, therefore,

SCS =
k(α)

4π

∫

R3

ǫνλκ tr

(

Aν∂λAκ +
2i

3
AνAλAκ

)

. (5.10)

Note that in the case of anomalous-U(1) Wilson lines, the boundary conditions (5.8) would

correspond to a symmetry of the action and measure of the theory — hence be admissible

as boundary conditions — only if the Wilson lines take quantized values,

2T (R)αR = 2πn, n ∈ Z , (5.11)

9 For complex representation Dirac fermions, these “chirally-twisted” boundary conditions can also be

rewritten as Ψ(x, y + L) = eiαRγ5Ψ(x, y) .
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implying that admissible boundary conditions for fermions are quantized (such that the ’t

Hooft vertex is invariant). Thus, the coefficients of the induced CS terms in this case also

take quantized values.

Note that the phase structure of gauge theory — massive versus perturbatively mass-

less photons — is affected by turning on such discrete Wilson lines. Since the values are

quantized, the one-loop potential for the Wilson line (Casimir energies) should not effect

them (discrete Wilson lines are known to appear in string theory, for example as discon-

nected components on the moduli space of D-branes [21]). Moreover, at nonzero k, the

finite action monopole solutions (or other topological excitations, such as magnetic bions

pertinent to gauge theories on S1×R3) which would render the gauge fluctuations massive

nonperturbatively do not exist; see, e.g., [22]. In this sense, the two types of possible mass

terms for gauge fluctuations, parity odd topological CS mass and parity even magnetic

monopole or bion induced mass do not mix.

To summarize, since the chiral anomalous U(1) current is parity odd, the response

of gauge theory is to produce a non-gauge invariant CS term at generic values of the

background Wilson line. Only at admissible (discrete set of) boundary conditions for

fermions, the induced CS term is gauge invariant and sensible, and a parity odd mass term

is generated for the gauge theory. At these points, the finite action topological excitation are

excised from the gauge theory. If no anomalous U(1) is turned on, the photon is massless

to all orders in perturbation theory, and a parity even mass term can be induced non-

perturbatively via topological excitations with zero index, either elementary or composite.

The notion of the disconnected components of the gauge theory “moduli space” may

find interesting applications both in physics and mathematics. First, we formulate a QCD-

like gauge theory on M3 × S1 where M3 is some three-manifold of arbitrary size, and

S1 is small. Then, we impose admissible boundary conditions on the (say) adjoint Weyl

fermion10 by using a “chiral twist” (5.8) obeying (5.11), by taking α = 2πn
2N , and assuming

that n is a positive integer (this is to say that only a Z2N is a anomaly-free remnant of

the U(1)A chiral rotation, and allowed as boundary condition). Integrating out all the

heavy KK-modes along the S1 circle induces, among other operators, the CS-term (5.10)

with coefficient given by (5.9) and equal to k(α) = N − n. This means that a CS-term

does not get induced for strictly periodic and anti-periodic (thermal) boundary conditions.

Otherwise, we expect that the long distance dynamics of these disconnected components of

the “moduli space” of QCD-like theories is described by topological CS-theory on M3. This

means that the theory is gapped, and is in a topologically ordered Chern-Simons phases.

Up to our knowledge, this is the first derivation of CS-theory and topological phases from

QCD-like dynamics. We will pursue this direction in subsequent work.

10That this theory is actually SYM plays no role, as one can similarly consider multi-adjoint theo-

ries. The discussion can also be generalized to Dirac fermions in complex, two-index representations. For

R = {AS, S, BF, F} representations, there are respectively, 2T (R) disconnected components (B.8), and for

2T (R)− 1 of them, the long distance physics reduces to pure Chern-Simons theory. In particular, for QCD

with one fundamental fermions, there is no admissible boundary condition for which the infrared physics

reduces to CS-theory.
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Note added. While completing this paper, a new preprint [26] appeared, which discusses

the relation between the R-symmetry-twisted boundary conditions (which is a chiral-twist

in our nomenclature) and CS theories in supersymmetric N = 4 SYM theory. Our discus-

sion in section 5 has some overlaps with the discussion therein.

A Another calculation of the η-invariant

Here we give an alternative computation of ηj [0] of eq. (2.16). We now use the form [23, 24]:

η[0] =
1

π
lim

m→∞

∑

λ

Im ln
λ+ im

λ− im
=

1

π
lim

m→∞
Im ln det

h+ im

h− im
, (A.1)

which holds because:

lim
m→∞

λ+ im

λ− im
= lim

m→∞
ei2Arctan(m

λ ) = eiπ signλ ,

and the branch of the logarithm is defined so that ln eiφ = iφ (zero eigenvalues λ are assumed

to not occur; if they do the formula (A.1) is ambiguous and needs to be modified [24]).

Recall from the discussion in paragraph above eq. (2.16) that h is the one-dimensional

“massive Dirac operator” i d
dy + v̂ whose eigenvalues change sign under the combined y →

−y, v̂ → −v̂ transformation. Together with (A.1) (or (A.2)) this implies that the spectral

asymmetry (A.1) flips sign under v̂ → −v̂. For our operator, λ = 2πn
L + v̂, so we have:

η[0] =
1

π
lim

m→∞

∞∑

n=−∞
Im ln

2πn
L + v̂ + im

2πn
L + v̂ − im

=
1

π
lim

m→∞

∞∑

n=−∞
Im ln

n+ a+ im

n+ a− im
,

a ≡ Lv̂

2π
−
⌊
Lv̂

2π

⌋

⊂ (0, 1) , (A.2)

where in the first line we trivially rescaled m and the second line means that a is taken to

be in the interval (0, 1), which is always possible to achieve by re-labelling the sum over

KK modes. We note that the region (0, 1) is the fundamental region, as η is well-defined

and smooth for all points (as opposed to the (−1/2,+1/2) region which includes a singular

point a = 0). The computation of η[0] is simplified by computing the derivative of (A.2)

wrt a. Integration to recover the a-dependent part is then trivially done (note that an

a-independent constant in η[0] would be irrelevant, since a v̂j-independent term in ηj[0]

does not contribute to the sum in (2.31); furthermore it is prohibited by the “parity”-odd

nature of η[0]). The derivative of (A.2) wrt a is now given by a convergent sum, which is:

dη[0]

da
= − 1

π
lim

m→∞
2m

∞∑

n=−∞

1

(n+ a)2 +m2
≡ − 2

π
lim

m→∞
m F (1, a,m) , (A.3)
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where the function F (1, a,m) is implicitly defined by the last equality and is computed,

e.g., in eq. (81) of [25], F (1, a,m) =
√

π
m (

√
π + 4

∞∑

p=1
(πpm)

1
2 cos(2πpa)K 1

2
(2πpm)). When

m → ∞, only the first term in F (1, a,m) survives, limm→∞mF (1, a,m) = π, thus
dη[0]
da = −2, which determines ηj [0] up to an integration constant:

ηj[0] = −2aj + c = −2

(
Lv̂j

2π
−
⌊
Lv̂j

2π

⌋)

+ c. (A.4)

This periodic (in v̂j) result can be made “parity”-odd by taking c = 1, giving back (2.24).

B Index for higher representation fermions

R3. The Callias index theorem on R3 can be obtained by restricting the sum in (2.15)

to p = 0.

Fund. : IF (n1, . . . , nN−1) = −1

2

N∑

i=1

sign(v̂i)(ni − ni−1)

= −1

2

N−1∑

i=1

ni

[

sign(v̂i) − sign(v̂i+1)
]

= nj∗ . (B.1)

where v̂j∗ < 0 < v̂j∗+1. Since there is no axial anomaly in d = 3, there is no other

contribution to the index and this is the final result. A better way to express ( B.1), which

is easily generalizable to arbitrary representation of the gauge group SU(N) is:

IF (n1, . . . , nN−1) = −tr[sign(A4) · B̂] . (B.2)

where sign(A4) is the sign matrix and B̂ =
∑N−1

i=1 ni (αiH) is the space independent part

of eq. (1.17). For an arbitrary representation R, this formula generalizes as:

IR(n1, . . . , nN−1) = −trR[sign(A4) · B̂] . (B.3)

Our main interest is in fermionic matter in two index representations of gauge group,

namely, adjoint, antisymmetric (AS), symmetric (S) of SU(N) and bi-fundamental (BF)

representation of SU(N) × SU(N). For the adjoint, the index is:

Adjoint : IAdj(n1, . . . , nN−1) = −1

2

N∑

i,j=1

sign(v̂i − v̂j)
[

(ni − ni−1) − (nj − nj−1)
]

= −
N−1∑

j=1

N−1∑

i=1

ni

[

sign(v̂i − v̂j) − sign(v̂i+1 − v̂j)
]

=

N−1∑

j=1

2nj . (B.4)
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This means that in the background of each elementary monopole, there are two fermionic

zero modes. For the other two-index representations, the expressions are:

BF : IBF (n1
1, . . . , n

1
N−1, n

2
1, . . . , n

2
N−1)=−1

2

N∑

i,j=1

sign(v̂1
i −v̂2

j )
[

(n1
i −n1

i−1)−(n2
j−n2

j−1)
]

,

AS : IAS(n1, . . . , nN−1) = −1

2

N∑

i>j

sign(v̂i + v̂j)
[

(ni − ni−1) + (nj − nj−1)
]

,

S : IS(n1, . . . , nN−1) = −1

2

N∑

i≥j

sign(v̂i + v̂j)
[

(ni − ni−1) + (nj − nj−1)
]

. (B.5)

It is more convenient to express the index for AS/S representations as:

IAS/S =−1

4

N∑

i,j=1

sign(v̂i + v̂j)
[

(ni − ni−1) + (nj − nj−1)
]

±
N∑

i

sign(2v̂i)(ni − ni−1) .

=−1

2

N−1∑

i,j=1

ni

[

sign(v̂i+v̂j) − sign(v̂i+1 + v̂j)
]

±
N−1∑

i

ni

[

sign(2v̂i) − sign(2v̂i+1)
]

(B.6)

R3
× S1. This formulae can be straightforwardly generalized to R3 × S1 by repeating

our derivations for the fundamental. The non-integer contributions to the index from the

topological charge cancel the corresponding non-integer part of the η-invariant, yielding a

general expression; further, if the definition of B̂ is extended to include the affine root (1.14),

B̂ =
∑N

i=1 ni (αiH), with n1, . . . , nN−1 are the monopole numbers of the background and

nN—the KK-monopole number, this equation can be also extended to also include the

KK monopole:

IR[n1, . . . , nN ] = 2T (R)nN − trR

⌊
A4L

2π

⌋

· B̂ . (B.7)

The second term in (B.7) follows from (2.13), (2.25) by simply extending the definition of

B̂ to include the affine-root monopole (and by dropping the non-integer terms) while the

first term is due to the (negative) integer topological charge contribution to the index of

the KK monopole. For reference,

2T (R) = {1, 2N,N,N + 2, N − 2}, for R = {F,Adj,BF,S,AS} (B.8)

for a single Weyl fermion. Note that

IR,instanton = IR,R3×S1[1, 1, . . . , 1, 1] = 2T (R) (B.9)

is just the APS index for an BPST instanton.
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