Index theorem for topological excitations on $R^{3} \times S^{1}$ and Chern-Simons theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
JHEP03(2009)027
(http://iopscience.iop.org/1126-6708/2009/03/027)
The Table of Contents and more related content is available

Download details:
IP Address: 80.92.225.132
The article was downloaded on 03/04/2010 at 10:41

Please note that terms and conditions apply.

Index theorem for topological excitations on $\mathrm{R}^{3} \times \mathrm{S}^{1}$ and Chern-Simons theory

Erich Poppitz ${ }^{a}$ and Mithat Ünsal ${ }^{b}$
${ }^{a}$ Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
${ }^{b}$ SLAC and Physics Department, Stanford University, Stanford, CA 94025/94305, U.S.A.
E-mail: poppitz@physics.utoronto.ca, unsal@slac.stanford.edu

Abstract

We derive an index theorem for the Dirac operator in the background of various topological excitations on an $R^{3} \times S^{1}$ geometry. The index theorem provides more refined data than the APS index for an instanton on R^{4} and reproduces it in decompactification limit. In the R^{3} limit, it reduces to the Callias index theorem. The index is expressed in terms of topological charge and the η-invariant associated with the boundary Dirac operator. Neither topological charge nor η-invariant is typically an integer, however, the non-integer parts cancel to give an integer-valued index. Our derivation is based on axial current non-conservation - an exact operator identity valid on any four-manifold - and on the existence of a center symmetric, or approximately center symmetric, boundary holonomy (Wilson line). We expect the index theorem to usefully apply to many physical systems of interest, such as low temperature (large S^{1}, confined) phases of gauge theories, center stabilized Yang-Mills theories with vector-like or chiral matter (at S^{1} of any size), and supersymmetric gauge theories with supersymmetry-preserving boundary conditions (also at any S^{1}). In QCD-like and chiral gauge theories, the index theorem should shed light into the nature of topological excitations responsible for chiral symmetry breaking and the generation of mass gap in the gauge sector. We also show that imposing chirally-twisted boundary condition in gauge theories with fermions induces a Chern-Simons term in the infrared. This suggests that some QCD-like gauge theories should possess components with a topological Chern-Simons phase in the small S^{1} regime.

Keywords: Solitons Monopoles and Instantons, Nonperturbative Effects, Chern-Simons Theories, Anomalies in Field and String Theories

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Outline 3
1.3 Notation 4
2 The index for Dirac operator on $R^{3} \times S^{1}$ 7
2.1 The index in a "static" BPS monopole background and Callias index 9
2.1.1 Surface term contribution 9
2.1.2 Topological charge contribution 12
2.1.3 The final expression for the index 12
2.2 The index in a "winding" BPS-KK monopole background 13
$3 \mathrm{SU}(2)$ with arbitrary representation fermions 16
4 Interpolating from Callias to APS index 18
5 Remarks on anomalies and induced Chern-Simons terms on $R^{3} \times S^{1}$ 19
5.1 Loop-induced Chern-Simons terms on $R^{3} \times S^{1}$ 20
5.2 Excision of topological excitations and remnant Chern-Simons theories 22
A Another calculation of the η-invariant 24
B Index for higher representation fermions 25

1 Introduction

1.1 Motivation

A method to study non-perturbative aspects of an asymptotically free gauge theory on R^{4} is to begin with a compactification on $R^{3} \times S^{1} . S^{1}$ may be either a spatial or temporal circle, determined according to the spin connection of fermions. In asymptotically free gauge theories, the size of S^{1} is a control parameter for the strength of the running coupling at the scale of compactification. At radius much smaller than the strong length scale, the theory is weakly coupled and at large radius, it is strongly coupled. It is well-known that certain aspects of weakly coupled gauge theories are amenable to perturbative treatment. It is less known that such gauge theories also admit a semi-classical non-perturbative treatment if the boundary Wilson line (Polyakov loop) satisfies certain conditions.

Let $\mathrm{U}(x)$ denote the holonomy of Wilson line wrapping the S^{1} circle:

$$
\begin{equation*}
\mathrm{U}(x)=P \exp i \oint A_{4} d y, \quad x \in R^{3}, y \in S^{1} \tag{1.1}
\end{equation*}
$$

where $A_{4}(x, y)$ is the component of the gauge field along the compactified direction. If the eigenvalues of the A_{4} field (which are gauge invariant) repel each other in the weak coupling regime, for a dynamical reason or due to a deformation described below, then the boundary value of the A_{4} field as $|x| \rightarrow \infty$ takes the form:

$$
\begin{equation*}
\left.A_{4}\right|_{\infty}=\operatorname{diag}\left(\hat{v}_{1}, \hat{v}_{2}, \ldots \hat{v}_{N}\right), \quad \hat{v}_{1}<\hat{v}_{2}<\ldots<\hat{v}_{N} . \tag{1.2}
\end{equation*}
$$

In the weak coupling regime, A_{4} behaves as a compact adjoint Higgs field and the vacuum configuration (1.2) induces gauge symmetry breaking, $G \rightarrow \mathbf{A b}(G)$, to the maximal abelian subgroup $\mathbf{A b}(G)$. This means that there exist a plethora of stable topological excitations in such four dimensional gauge theories, such as magnetic monopoles, magnetic bions, instantons and other interesting (stable) composites.

It is well-known that in a thermal set-up at sufficiently high temperatures (and weak coupling), dynamics disfavors configurations for Wilson lines such as (1.2) [1], and favors configurations for which $\left.A_{4}\right|_{\infty}=\operatorname{diag}(\hat{v}, \hat{v}, \ldots \hat{v})=(0,0, \ldots, 0)$. In such cases, the effect of topological excitations is suppressed by volume factors, and semi-classical techniques do not usefully apply [1]. Due to these legitimate reasons, semi-classical methods in finite temperature setting have not received wide attention so far (although see [2]), and are not part of the common-place techniques to study Yang-Mills theory and non-supersymmetric Yang-Mills theory with vector-like and chiral matter, compactified on a circle.

However, there are at least three ways to make such boundary values of Wilson lines stable at weak coupling. These are: a.) center-stabilizing double-trace deformations, b.) adjoint fermions with periodic boundary conditions, or mixed representations of adjoints and a few complex representation fermions all with periodic boundary conditions, and c.) supersymmetry and supersymmetry preserving boundary conditions. In this sense, the case of non-trivial holonomy (1.2) at weak coupling is as generic as the high-temperature trivial holonomy. In particular, with the center stabilizing double-trace deformations, certain gauge theories on R^{4}, such as Yang-Mills theory and vector-like and even chiral theories can be smoothly connected to small $S^{1} \times R^{3}[3-5]$. There already exist evidence from lattice gauge theory (where deformations were also suggested independently to explore phases of partial center symmetry breaking) that the conjecture of smoothness holds for Yang-Mills theory $[6] .{ }^{1}$ Therefore, there is currently a strong incentive to study in detail the topological excitations on $R^{3} \times S^{1}$ and the index theorems associated with these excitations.

Our interest is in the index of the Dirac (or Dirac-Weyl) operator \hat{D} (1.5) in the background of topological excitations pertinent to the gauge theory on $R^{3} \times S^{1}$. The reason that this is interesting for non-perturbative physics is two-fold:

[^0]- The topological excitations with non-vanishing index will carry compulsory fermion zero modes attached to them, and may induce chiral symmetry breaking. Generically, the fermionic index of a monopole operator on $R^{3} \times S^{1}$ is (much) smaller than the APS index for the BPST instanton. Thus, they are in principle more relevant for low energy phenomena.
- The generation of mass gap (and confinement) for gauge fluctuations, in the weak coupling regime, requires the existence of topological excitations with vanishing index. In typical QCD-like and chiral gauge theories, most of the leading topological excitations (monopoles) carry fermionic zero modes, hence cannot contribute to the mass gap. Therefore, the index theorem can be used to identify composite topological excitations (such as magnetic bions) for which the sum of individual indices add up to zero.

A simple example which illustrates both issues is Yang-Mills theory with adjoint fermions $(\mathrm{QCD}(\operatorname{adj}))$ and $\mathcal{N}=1$ SYM. In both cases, magnetic monopole operators (which appear at order $e^{-S_{0}}=e^{-8 \pi^{2} /\left(g^{2} N\right)}$ in the semi-classical $e^{-S_{0}}$ expansion) induce a certain chiral condensate. However, the topological excitations responsible for the existence of mass gap of the dual photon and thus for confinement are the magnetic bions with vanishing index, which appear at order $e^{-2 S_{0}}$. The index theorem on $R^{3} \times S^{1}$ should help us identify both classes of non-perturbative topological excitations for any gauge theory.

The non-perturbative semi-classical analysis provides reliable information about the gauge theory in the weak coupling regime. However, the semi-classical treatment does not extend over to the large radius, strong coupling regime, where the eigenvalues of A_{4} fluctuate rapidly, and there is no "Higgs regime" where the long-distance theory abelianizes. In the partition function, we need to sum over all gauge inequivalent configurations. At $x=\infty, A_{4}$ field can acquire a profile consistent with the unbroken center symmetry, such as (1.2). In fact, the boundary Wilson line (1.2) defines an isotropy group at infinity [1]: $G_{\left.A_{4}\right|_{\infty}}=\left\{g \in G \mid g \mathrm{U}(\infty) g^{\dagger}=\mathrm{U}(\infty)\right\}$. For example, in low temperature pure YangMills theory, the isometry group is isomorphic to the maximal abelian subgroup, $G_{\left.A_{4}\right|_{\infty}} \sim$ $\mathbf{A b}(G)$. This does not mean that a dynamical abelianization takes place in this regime, nor semi-classical techniques apply. However, the index theorem for the Dirac operator can be interpolated from R^{3} to R^{4}. The index theorem is valid at any radius, regardless of the value of the coupling constant.

Although the index theorem and topological excitations consistent with the isotropy group $G_{\left.A_{4}\right|_{\infty}}$ continue to exist in the large S^{1} strong-coupling domain, the semi-classical techniques no longer usefully apply. Nonetheless, we believe that there is value in studying the form of the topological operators, dictated by the appropriate index theorem, and at least qualitatively study their dynamical effects. This is the goal of the recent "deformation program".

1.2 Outline

We introduce our notation in section 1.3 below. In section 2, we begin the calculation of the index. Our calculation can be thought of as a generalization of that of $[8,9]$, see
also [10]. We show that the index on $R^{3} \times S^{1}$ has two contributions - a topological charge and surface term contribution.

In section 2.1, we first calculate the index for static monopole backgrounds. The surface term contribution, section 2.1.1, is expressed in terms of the η-invariant of the boundary Dirac operator, while the topological charge contribution is given in section 2.1.2. The final formula for the index in the "static" background is eq. (2.32) for the fundamental of $\mathrm{SU}(N)$ and eqs. (B.1), (B.4) from appendix B for other representations. The calculation of the index in a Kaluza-Klein ("winding") monopole background is given in section 2.2, with the result for the fundamental of $\operatorname{SU}(N)$ in (2.44), and in (B.7) for general representations.

We note that an expression for the index on $R^{3} \times S^{1}$ similar to ours - given in terms of the topological charge and the η-invariant - can be extracted from the appendix of ref. [13]. The contribution of this paper consists of: a.) a derivation of the index accessible to physicists along the lines given in the physics literature for R^{3} and by using exact operator identities valid on any four-manifold and b.) a calculation of the index in specific backgrounds and a discussion of its jumps - properties which are of interest for concrete quantum field theory applications.

In section 3, we discuss in some more detail the index for the three lowest representations of $\operatorname{SU}(2)$ and the fundamental of $\mathrm{SU}(N)$. We explain the jumps of the index which occur as the ratio of boundary holonomy to the size of S^{1} is varied.

In section 4, we explain the relation to the Callias [11] and APS [12] indices.
In section 5, we consider the generation of fermion-loop induced Chern-Simons terms on $R^{3} \times S^{1}$. We show when Chern-Simons terms are induced and how their coefficients are quantized. We consider the effect of turning on of discrete Wilson lines for background fields gauging anomalous flavor symmetries (similar effects are known from the string literature). The resulting Chern-Simons terms have a profound effect on the phase structure of the theory on $R^{3} \times S^{1}$.

Finally, appendix A contains another calculation of the η-invariant. In appendix B, we give formulae for the index for general representations.

1.3 Notation

We take the four-dimensional Euclidean Dirac operator of a vector-like fermion in the representation \mathcal{R} to be:

$$
\begin{equation*}
\hat{D} \equiv \gamma_{\mu} D_{\mu}, \quad D_{\mu} \equiv \partial_{\mu}+i A_{\mu}^{a} T^{a} \tag{1.3}
\end{equation*}
$$

We use hermitean $T^{a}{ }^{\text {s }}$, obeying $\operatorname{Tr} T^{a} T^{b}=T(\mathcal{R}) \delta^{a b}$, taking T (fund.) $=1 / 2$ for $\operatorname{SU}(N)$. To further set and check notation, note that we use, in a given representation, $\psi \rightarrow U \psi$, $A_{\mu} \rightarrow U A_{\mu} U^{\dagger}-i U \partial_{\mu} U^{\dagger}$ under gauge transformations, hence $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i\left[A_{\mu}, A_{\nu}\right]$. Roman indices run from $1 \ldots 3$, while Greek indices span $1 \ldots 4$; the $x^{4} \equiv y$ direction is periodic, $y \equiv y+L$. The hermitean Euclidean γ-matrix basis we use is:

$$
\begin{equation*}
\gamma_{k}=\sigma_{1} \otimes \sigma_{k}, \quad \gamma_{4}=-\sigma_{2} \otimes \sigma_{0}, \quad \gamma_{5}=\sigma_{3} \otimes \sigma_{0} \tag{1.4}
\end{equation*}
$$

where σ_{k} are Pauli matrices and σ_{0} is the unit matrix. The vector-like Dirac operator (1.3) is:

$$
\hat{D}=\left(\begin{array}{cc}
0 & \sigma_{k} D_{k}+i \sigma_{0} D_{4} \tag{1.5}\\
\sigma_{k} D_{k}-i \sigma_{0} D_{4} & 0
\end{array}\right) \equiv\left(\begin{array}{cc}
0 & -D^{\dagger} \\
D & 0
\end{array}\right) .
$$

In the above equation, we defined the 2×2 Weyl operator D, obeying:

$$
\begin{align*}
D^{\dagger} D & =-D_{\mu} D_{\mu}+\sigma^{m} \frac{1}{2} \epsilon_{m k l} F_{k l}+\sigma_{k} F_{4 k}=-D_{\mu} D_{\mu}+2 \sigma^{m} B^{m} \tag{1.6}\\
D D^{\dagger} & =-D_{\mu} D_{\mu}+\sigma^{m} \frac{1}{2} \epsilon_{m k l} F_{k l}-\sigma_{k} F_{4 k}=-D_{\mu} D_{\mu} \tag{1.7}
\end{align*}
$$

Here, D_{μ} is as defined in (1.3), and we assumed, without loss of generality, that the background of interest is anti self-dual, namely that $F_{4 k}=\frac{1}{2} \epsilon_{k p q} F_{p q} \equiv B_{k}$ (all expressions can be easily generalized for self-dual backgrounds). In this paper, we will use " Tr " to denote traces of operators over spacetime as well as spinor indices, while "tr" will refer to traces over spinor indices only.

We are interested in computing the index of the Dirac operator in topologically nontrivial backgrounds on $R^{3} \times S^{1}$, generalizing the R^{3} result of [11]. The simplest example of a nontrivial background is given by the three-dimensional $\mathrm{SU}(2)$ Prasad-Sommerfield (PS) solution of unit magnetic charge, embedded in $R^{3} \times S^{1}$. The other backgrounds on interest can be constructed by taking superpositions of the fundamental monopoles and other solutions, obtained by non-periodic "gauge" transformations.

The PS solution is "static" (i.e. y-independent) and the A_{4}-component of the gauge field plays the role of the Higgs field. For example, consider the anti self-dual solution, which obeys $F_{4 k}=-\frac{1}{2} \epsilon_{4 k p q} F_{p q}=\frac{1}{2} \epsilon_{k p q} F_{p q} \equiv B_{k}$. In our conventions and in regular ("hedgehog") gauge, the $\mathrm{SU}(2)$ solution reads:

$$
\begin{equation*}
A_{4}=A_{4}^{a}(r, v) T^{a}=\hat{r}^{a} f(r, v) T^{a}, \quad A_{j}=A_{j}^{a}(r, v) T^{a}=\epsilon_{j b a} \hat{r}^{b} g(r, v) T^{a} \tag{1.8}
\end{equation*}
$$

where $\hat{r}^{a}=\frac{r^{a}}{r}$ and:

$$
\begin{equation*}
f(r, v)=\frac{1}{r}-v \operatorname{coth} v r, \quad g(r, v)=-\frac{1}{r}+\frac{v}{\sinh v r} \tag{1.9}
\end{equation*}
$$

The asymptotics of the B_{k}, A_{4} fields of the PS solution at infinity are:

$$
\begin{align*}
\left.A_{4}\right|_{\infty} & =-v \hat{r}^{a} T^{a}\left(1-\frac{1}{v r}+\ldots\right) \\
\left.B_{k}\right|_{\infty} & =\frac{\hat{r}^{k}}{r^{2}} \hat{r}^{a} T^{a}+\ldots \tag{1.10}
\end{align*}
$$

where dots denote terms that vanish as $e^{-v r}$. To cast the solution in string gauge, we need to gauge transform $\hat{r}^{a} T^{a} \rightarrow T^{3}$. The asymptotics of A_{4} and B_{k} in string gauge are obtained from (1.10) by replacing $\hat{r}^{a} T^{a}$ with T^{3}, for example the asymptotics of $\mathrm{SU}(2)$-holonomy is $\left.A_{4}\right|_{\infty}=\frac{1}{2} \operatorname{diag}(-v, v)$.

For the applications we have in mind, we want to also consider monopole solutions of $\mathrm{SU}(N)$. The $\mathrm{SU}(2)$ PS solution considered above can be embedded in $\mathrm{SU}(N)$ as described in [9]. For simplicity, we will use the fundamental generators of $\mathrm{SU}(N)$ to describe the embedding (a description of the embedding using roots and weights can be also given, see [9]; however, we find that for our purposes using $N \times N$ matrices is both sufficient and illuminating). The general form of the asymptotics of the Higgs field A_{4} is:

$$
\begin{align*}
\left.A_{4}\right|_{\infty}= & \operatorname{diag}\left(\hat{v}_{1}, \hat{v}_{2}, \ldots \hat{v}_{N}\right), \\
& \hat{v}_{1}<\hat{v}_{2}<\ldots<\hat{v}_{N}, \quad \sum_{i=1}^{N} \hat{v}_{i}=0 \tag{1.11}
\end{align*}
$$

where, without loss of generality, we have ordered the eigenvalues as in our $\mathrm{SU}(2)$ example (for example, eq. (1.10) corresponds to taking $\hat{v}_{1}=-\hat{v}_{2}=-\frac{v}{2}$). A background with an additional overall $\mathrm{U}(1)$ "Wilson line" a_{0}, often also called "real mass" term (when fermions are included), allows the holonomies \hat{v}_{j} to be more general:

$$
\begin{equation*}
\hat{v}_{j} \rightarrow \hat{v}_{j}+\frac{1}{\sqrt{2 N}} a_{0} \tag{1.12}
\end{equation*}
$$

where we also normalized the overall $\mathrm{U}(1)$ generator multiplying a_{0} to $\operatorname{Tr} T^{2}=1 / 2$. Including a non-vanishing a_{0} can be used to incorporate different boundary conditions for the fermions in all our formulae.

The asymptotic form of the $\mathrm{U}(N)$ holonomy (1.11), (1.12) admits N types of elementary monopoles; $N-1$ of these are associated with the positive simple roots α_{i} of the $\operatorname{SU}(N)$ Lie algebra, for which:

$$
\begin{equation*}
\alpha_{i} \cdot \mathbf{H}=\frac{1}{2} \operatorname{diag}(0, \ldots, \underbrace{1}_{i}, \underbrace{-1}_{i+1}, \ldots, 0), \quad i=1, \ldots N-1, \tag{1.13}
\end{equation*}
$$

where $\mathbf{H}=\left(H^{1}, \ldots, H^{N-1}\right)$, where H^{a} denote the Cartan generators of $\operatorname{SU}(N)$. The Cartan generators and simple roots are normalized as $\operatorname{Tr} H^{a} H^{b}=\frac{1}{2} \delta^{a b}, \alpha_{i} \cdot \alpha_{j}=\delta_{i, j}$ $\frac{1}{2} \delta_{i, j \pm 1}$. The $N^{\text {th }}$ type of fundamental monopole arises due to compactness of the "Higgs" field A_{4}, and is associated with the "affine" root:

$$
\begin{equation*}
\alpha_{N} \cdot \mathbf{H} \equiv-\sum_{j=1}^{N-1} \alpha_{j} \cdot \mathbf{H}=\frac{1}{2} \operatorname{diag}(-1,0,0, \ldots, 1) . \tag{1.14}
\end{equation*}
$$

A monopole solution corresponding to the $i^{\text {th }}$ simple root (1.13) of $\mathrm{SU}(N)$ can be constructed from (1.10) as follows. First, rewrite the holonomy (1.11):
$\left.A_{4}\right|_{\infty}=\operatorname{diag}(\hat{v}_{1}, \hat{v}_{2}, \ldots, \hat{v}_{i-1}, \underbrace{V}_{i}, \underbrace{V}_{i+1}, \hat{v}_{i+2}, \ldots, \hat{v}_{N})+\frac{1}{2} \operatorname{diag}(0,0, \ldots, 0, \underbrace{-\tilde{V}}_{i}, \underbrace{\tilde{V}}_{i+1}, 0, \ldots, 0)$,
where $V=\frac{1}{2}\left(\hat{v}_{i+1}+\hat{v}_{i}\right)$ and $\tilde{V}=\hat{v}_{i+1}-\hat{v}_{i}$. We now diagonally embed the $\mathrm{SU}(2)$ generators τ^{a} into $\operatorname{SU}(N)$, such that their only nonzero elements are equal to one-half the Pauli matrices embedded in a 2×2 square along the diagonal of the $N \times N$ matrices (thus, their diagonal elements are the $i^{\text {th }}$ and $i+1^{\text {th }}$ ones singled out in (1.15)). With this embedding it is easy to explicitly verify that:

$$
\begin{align*}
& A_{4}=\hat{r}^{a} f(r, \tilde{V}) \tau^{a}+\operatorname{diag}\left(\hat{v}_{1}, \hat{v}_{2}, \ldots, \hat{v}_{i-1}\right. \\
& A_{i}\underbrace{V}_{i+1}, \hat{v}_{i+2}, \ldots, \hat{v}_{N}), \tag{1.16}\\
& A_{m b a} \hat{r}^{b} g(r, \tilde{V}) \tau^{a}
\end{align*}
$$

with $f(r, \tilde{V})$ and $g(r, \tilde{V})$ defined in (1.9) solves the anti-self-duality condition $F_{4 k}=B_{k}$ inside $\mathrm{SU}(N)$. The large-radius asymptotics can be immediately read off (1.10) by replacing T^{a} with τ^{a} and inserting in (1.16).

Finally, a collection of $n_{1}, n_{2}, \ldots, n_{N-1}$ fundamental monopoles of the type corresponding to the $1^{\text {st }}, 2^{\text {nd }}, \ldots, N-1^{\text {th }}$, respectively, simple root of $\mathrm{SU}(N)$, has an asymptotic magnetic field which is the natural generalization of (1.10) and is given, in the string gauge, by:

$$
\begin{align*}
\left.B^{m}\right|_{\infty} & =\frac{\hat{x}^{m}}{|x|^{2}} \sum_{i=1}^{N-1} n_{i}\left(\alpha_{i} \cdot \mathbf{H}\right) \\
& =\frac{1}{2} \frac{\hat{x}^{m}}{|x|^{2}} \operatorname{diag}\left(n_{1}, n_{2}-n_{1}, \ldots, n_{j}-n_{j-1}, \ldots,-n_{N-1}\right) \tag{1.17}
\end{align*}
$$

The asymptotic form of the $\mathrm{SU}(N)$ holonomy is as in (1.11) and the string gauge asymptotics of the gauge field is best described in polar coordinates, with A_{ϕ} its only nonvanishing component:

$$
\begin{equation*}
\left.A_{\phi}\right|_{\infty}=\frac{1-\cos \theta}{2} \operatorname{diag}\left(n_{1}, n_{2}-n_{1}, \ldots, n_{j}-n_{j-1}, \ldots,-n_{N-1}\right) \tag{1.18}
\end{equation*}
$$

The Kaluza-Klein monopole solution corresponding to the affine root (1.14) will be constructed in section 2.2 .

2 The index for Dirac operator on $R^{3} \times S^{1}$

We define the Callias index of a Weyl fermion (with equation of motion $D \psi=0$ and D defined in (1.5)) in the representation \mathcal{R} on $S^{1} \times R^{3}$ as in [8, 11]:

$$
\begin{equation*}
I_{\mathcal{R}}=\lim _{M^{2} \rightarrow 0} \operatorname{Tr} \frac{M^{2}}{D^{\dagger} D+M^{2}}-\operatorname{Tr} \frac{M^{2}}{D D^{\dagger}+M^{2}} \tag{2.1}
\end{equation*}
$$

This is the definition most convenient for explicit calculations, despite the fact that in the locally four dimensional case of interest an additional regularization will be required, having to do with the need to perform the sum over the Kaluza-Klein tower implicit in (2.1). Nonzero discrete eigenvalues do not contribute to the formal expression (2.1) - if ψ is an eigenfunction of $D^{\dagger} D$ with a nonzero eigenvalue, $D \psi$ is an eigenfunction of $D D^{\dagger}$ with the same eigenvalue and so their contributions to the trace cancel - hence $I_{\mathcal{R}}$ counts the number of zero modes of D minus the number of zero modes of D^{\dagger}; the continuous spectrum also does not contribute to (2.1) if all \hat{v}_{j} are different, see the discussion in the appendix of ref. [8]. The arguments given there continue to hold on $R^{3} \times S^{1}$ and we will not repeat them here - as will become clear from our results, $I_{\mathcal{R}}$ of eq. (2.1) always yields an integer value for finite action backgrounds on $R^{3} \times S^{1}$. Furthermore, we will show that the index reduces to the Callias index in the appropriate limit and experiences discontinuous jumps, which can also be explained physically, upon changing the ratio of the circumference of S^{1} (L) to the holonomies at infinity $\left(\hat{v}_{j}\right)$.

Using the operator \hat{D} from (1.5) and our notation for γ_{5} (1.4), we find that:

$$
\begin{equation*}
I_{\mathcal{R}}\left(M^{2}\right)=\operatorname{Tr} \gamma_{5} \frac{M^{2}}{-\hat{D}^{2}+M^{2}}=M \operatorname{Tr} \gamma_{5} \frac{\hat{D}+M}{-\hat{D}^{2}+M^{2}} \tag{2.2}
\end{equation*}
$$

where the second identity is true because of cyclicity of trace and $\gamma_{5} \hat{D}=-\hat{D} \gamma_{5}$. Finally we can cancel the $\hat{D}+M$ factor between numerator and denominator and arrive at the expression we will actually use:

$$
\begin{equation*}
I_{\mathcal{R}}\left(M^{2}\right)=M \operatorname{Tr} \gamma_{5} \frac{1}{-\hat{D}+M} \tag{2.3}
\end{equation*}
$$

In our study, we closely follow the derivation of the Callias index on R^{3} of ref. [8], paying respect to the differences due to the locally four-dimensional nature of spacetime. The main difference - apart from the already mentioned sum over Kaluza-Klein modes - occurs in the very first step below and has to do with the fact that anomalies occur in a locally four dimensional spacetime. To elucidate, we note that:

$$
\begin{equation*}
\langle x| \frac{1}{\hat{D}-M}|y\rangle=\langle\psi(x) \bar{\psi}(y)\rangle \tag{2.4}
\end{equation*}
$$

where $\langle\ldots\rangle$ denotes an expectation value in a Euclidean quantum field theory of a Dirac fermion $\psi, \bar{\psi}$ with action $-S=\bar{\psi}(-\hat{D}+M) \psi$. For such theories in a locally four dimensional background the following operator identity holds:

$$
\begin{equation*}
\partial_{\mu} J_{\mu}^{5} \equiv \partial_{\mu}\left(\bar{\psi} \gamma_{\mu} \gamma_{5} \psi\right)=-2 M \bar{\psi} \gamma_{5} \psi-\frac{T(\mathcal{R})}{8 \pi^{2}} G_{\mu \nu}^{a} \tilde{G}_{\mu \nu}^{a} \tag{2.5}
\end{equation*}
$$

The index (2.3), via (2.4), (2.5), can be rewritten as:

$$
\begin{align*}
I_{\mathcal{R}}\left(M^{2}\right) & =-M \operatorname{Tr} \gamma_{5}\langle\psi \bar{\psi}\rangle=M \int d^{3} x \int_{0}^{L} d y\left\langle\bar{\psi} \gamma_{5} \psi\right\rangle \\
& =-\frac{1}{2} \int_{S_{\infty}^{2}} d^{2} \sigma^{k} \int_{0}^{L} d y\left\langle J_{k}^{5}\right\rangle-\frac{T(\mathcal{R})}{16 \pi^{2}} \int d^{3} x \int_{0}^{L} d y G_{\mu \nu}^{a} \tilde{G}_{\mu \nu}^{a} \tag{2.6}
\end{align*}
$$

where we used periodicity of the current on S^{1} to argue that the integral of $\partial_{y}\left\langle J_{4}^{5}\right\rangle$ vanishes. Eq. (2.6) is our main tool, allowing us to smoothly interpolate the index from R^{3} to R^{4} by varying the size of the circle and the appropriate background. As a first simple check, take the limit of an infinite L, i.e. R^{4}, where eq. (2.6) becomes:

$$
\begin{equation*}
I_{\mathcal{R}}\left(M^{2}\right)=-\frac{1}{2} \int_{S_{\infty}^{3}} d^{3} \sigma^{\mu}\left\langle J_{\mu}^{5}\right\rangle-\frac{T(\mathcal{R})}{16 \pi^{2}} \int d^{4} x G_{\mu \nu}^{a} \tilde{G}_{\mu \nu}^{a} \tag{2.7}
\end{equation*}
$$

This is the index theorem ${ }^{2}$ appropriate for a BPST instanton background (provided that the surface term vanishes: that this is so follows from the fact that the surface contribution in (2.7) could only be due to BPST fermion zero modes, as the nonzero modes vanish exponentially at S_{∞}^{3} and so does their current; the fermion zero modes in an instanton fall off as a powerlaw $\left.\psi_{0}\right|_{x \rightarrow \infty} \sim \frac{\rho}{|x|^{3}}$, in nonsingular gauge [14]).

[^1]Going back to $R^{3} \times S^{1}$, consider now the integral over $S_{\infty}^{2} \times S^{1}$ in (2.6). We rewrite the surface term in (2.6) as follows:

$$
\begin{align*}
I_{\mathcal{R}}^{1}\left(M^{2}\right) & \equiv-\frac{1}{2} \int_{S_{\infty}^{2}} d^{2} \sigma^{k} \int_{0}^{L} d y\left\langle J_{k}^{5}\right\rangle=-\frac{1}{2} \int_{S_{\infty}^{2}} d^{2} \sigma^{k} \int_{0}^{L} d y \operatorname{tr}\langle x| \gamma^{k} \gamma_{5} \frac{1}{-\hat{D}+M}|x\rangle \tag{2.8}\\
& =-\frac{1}{2} \int_{S_{\infty}^{2}} d^{2} \sigma^{k} \int_{0}^{L} d y \operatorname{tr}\langle x|\left(\gamma^{k} \gamma_{5} \hat{D} \frac{1}{-\hat{D}^{2}+M^{2}}\right)|x\rangle, \tag{2.9}
\end{align*}
$$

where we performed the operations that led to eq. (2.3) in reverse. Further, from (1.5), the expressions (1.6) for $D^{\dagger} D$ and $D D^{\dagger}$, and the explicit form (1.4) of the γ-matrices, we have:

$$
\begin{align*}
I_{\mathcal{R}}^{1}\left(M^{2}\right)= & \frac{1}{2} \int_{S_{\infty}^{2}} d^{2} \sigma^{k} \int_{0}^{L} d y \operatorname{tr}\langle x| \sigma^{k} \sigma^{l} D_{l}\left(\frac{1}{-D_{\nu}^{2}+M^{2}+2 \sigma^{m} B^{m}}-\frac{1}{-D_{\nu}^{2}+M^{2}}\right)|x\rangle \\
& -\frac{1}{2} \int_{S_{\infty}^{2}} d^{2} \sigma^{k} \int_{0}^{L} d y \operatorname{tr}\langle x| i \sigma^{k} D_{4}\left(\frac{1}{-D_{\nu}^{2}+M^{2}+2 \sigma^{m} B^{m}}+\frac{1}{-D_{\nu}^{2}+M^{2}}\right)|x\rangle, \tag{2.10}
\end{align*}
$$

and we recall that (2.10) is written for an anti self-dual background. The final formula for the index which will be used in our further computations is:

$$
\begin{equation*}
I_{\mathcal{R}}\left(M^{2}\right)=I_{\mathcal{R}}^{1}\left(M^{2}\right)-\frac{T(\mathcal{R})}{16 \pi^{2}} \int d^{4} x G_{\mu \nu}^{a} \tilde{G}_{\mu \nu}^{a} \equiv I_{\mathcal{R}}^{1}+I_{\mathcal{R}}^{2} \tag{2.11}
\end{equation*}
$$

with $I_{\mathcal{R}}^{1}$ defined in (2.10) and $I_{\mathcal{R}}^{2}$, the topological charge contribution to the index, in (2.11).

2.1 The index in a "static" BPS monopole background and Callias index

Consider first a 3d BPS "static" monopole background, independent on the S^{1} coordinate. Physical intuition tells us that if we consider a small S^{1}, hence weak coupling, we expect the index on $R^{3} \times S^{1}$ to be the same as that on R^{3} provided $L v \ll 1$, such that KK modes do not influence physics at scales of order the size of the monopole. On the other hand, one expects that when $L v \gg 1$, the index can differ from the one on R^{3}. To study how this expectation plays out in detail and under what conditions the index can jump, in the following sections we successively evaluate the two contributions to the index (2.11).

2.1.1 Surface term contribution

To evaluate the contribution of the surface term (2.10), we note that at infinity the dominant terms in the expansion of the operators appearing in $I_{R}^{1}\left(M^{2}\right)$ in the static BPS background are:

$$
\begin{equation*}
-D_{\nu}^{2}+M^{2} \simeq-\partial_{m}^{2}+M^{2}-D_{4}^{2}, \text { with }-i D_{4} \rightarrow \frac{2 \pi n}{L}+A_{4}, \tag{2.12}
\end{equation*}
$$

where we used the string-gauge asymptotics of A_{4} (1.11) and A_{m} (1.18). We now expand the surface term contribution, recalling that $B^{m} \sim r^{-2}$, observing that only the second
term in (2.10) contributes after the Pauli matrix traces are taken, and using (2.12):

$$
\begin{equation*}
I_{\mathcal{R}}^{1}\left(M^{2}\right)=2 \int_{0}^{L} d y \int_{S_{\infty}^{2}} d^{2} \sigma^{k} \operatorname{tr}\langle x ; y| i D_{4} \frac{1}{-\partial_{m}^{2}+M^{2}-D_{4}^{2}} B^{k} \frac{1}{-\partial_{m}^{2}+M^{2}-D_{4}^{2}}|x ; y\rangle . \tag{2.13}
\end{equation*}
$$

Next, we substitute the asymptotic form for a "static" BPS solution, eq. (1.17), to obtain ${ }^{3}$ using (2.12) to replace $i D_{4}$:

$$
\begin{equation*}
I_{\mathcal{R}}^{1}\left(M^{2}\right)=-\int_{S_{\infty}^{2}} d^{2} \sigma^{k} \frac{\hat{x}_{k}}{|x|^{2}} \sum_{p=-\infty}^{\infty} \sum_{j=1}^{N}\left(\hat{v}_{j}+\frac{2 \pi p}{L}\right)\left(n_{j}-n_{j-1}\right) \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\left[k^{2}+M^{2}+\left(\hat{v}_{j}+\frac{2 \pi p}{L}\right)^{2}\right]^{2}} . \tag{2.14}
\end{equation*}
$$

After taking the three dimensional momentum and surface integrals ($d^{2} \sigma^{k} \equiv|x|^{2} \hat{x}_{k} d \Omega_{S^{2}}$), as well as the $M^{2} \rightarrow 0$ limit, the surface contribution to the index becomes:

$$
\begin{equation*}
I_{\mathcal{R}}^{1}(0)=-\frac{1}{2} \sum_{j=1}^{N}\left(n_{j}-n_{j-1}\right) \sum_{p=-\infty}^{\infty} \frac{\hat{v}_{j}+\frac{2 \pi p}{L}}{\left|\hat{v}_{j}+\frac{2 \pi p}{L}\right|} . \tag{2.15}
\end{equation*}
$$

The Kaluza-Klein (KK) mode sum in (2.15) is a periodic generalization of the sign function, which appears in the Callias index for gauge theories on R^{3} (upon taking $L \rightarrow 0$ only the $p=0$ term contributes in the sum and so (2.15) reproduces the Callias index result, see appendix B). Such a generalization is necessary, since on $R^{3} \times S^{1}$ the eigenvalues of the "Higgs" field A_{4} are compact and the index should be a periodic function of the expectation values of A_{4}, with periodicity determined by the representation \mathcal{R}.

The KK sum (2.15) can also be thought of as a sum of the indices of a KK tower of three-dimensional Dirac operators, each that of a KK fermion of mass $\frac{2 \pi p}{L}$. The Callias index theorem shows that for a given Higgs vev only a finite number of massive operators in the KK tower have a nonvanishing index (essentially, those with $|m|<\mathcal{O}(|v|)$), thus only a few terms in the sum over indices of KK Dirac operators can contribute to the index. While following this logic is a quick way to find our formula for the index for static backgrounds, recall that there is also a non-integer topological charge contribution given by the second term in (2.10), which should be cancelled by a corresponding non-integer contribution to (2.15) to yield an integer value. Thus, to obtain a formula for the index that works for general backgrounds [1], specified by the holonomy at infinity, magnetic charge, and topological charge, we must regulate the sum over KK modes in (2.15).

For a given j, the KK sum is equal to $\eta_{j}[0]$, the spectral asymmetry of the differential operator $h_{j}=i \frac{d}{d y}+\hat{v}_{j}$ acting on the space of periodic functions $f(y)=f(y+L)$. The η-invariant is defined by analytic continuation from sufficiently large $\operatorname{Re}(s)>0$ of:

$$
\begin{equation*}
\eta\left[v_{j}, s\right] \equiv \eta_{j}[s] \equiv \sum_{\lambda \neq 0} \frac{\operatorname{sign} \lambda}{|\lambda|^{s}}, \tag{2.16}
\end{equation*}
$$

[^2]where λ are the eigenvalues of $h_{j} .{ }^{4}$ Thus the surface term contribution to the index is:
\[

$$
\begin{equation*}
I_{\mathcal{R}}^{1}(0)=-\frac{1}{2} \sum_{j=1}^{N}\left(n_{j}-n_{j-1}\right) \eta_{j}[0] \tag{2.19}
\end{equation*}
$$

\]

To calculate $\eta_{j}[0]$, begin with its definition (2.16), rescaling both numerator and denominator by $\frac{2 \pi}{L}$:

$$
\begin{equation*}
\eta_{j}[s]=\sum_{p=-\infty}^{\infty} \frac{\operatorname{sign}\left(\frac{\hat{v}_{j} L}{2 \pi}+p\right)}{\left|\frac{\hat{v}_{j} L}{2 \pi}+p\right|^{s}}=\sum_{p=-\infty}^{\infty} \frac{\operatorname{sign}\left(\hat{a}_{j}+p\right)}{\left|\hat{a}_{j}+p\right|^{s}} . \tag{2.20}
\end{equation*}
$$

We defined:

$$
\begin{equation*}
\hat{a}_{j} \equiv \frac{\hat{v}_{j} L}{2 \pi}-\left\lfloor\frac{\hat{v}_{j} L}{2 \pi}\right\rfloor \subset(0,1), \tag{2.21}
\end{equation*}
$$

having noted that since η_{j} is a periodic function of \hat{a}_{j} of unit period, by relabeling the KK modes, we can take the argument to lie in the fundamental interval $(0,1)$. Here $\lfloor x\rfloor$ is the floor function:

$$
\begin{equation*}
\lfloor x\rfloor=\max \{n \in \mathbb{Z} \mid n \leq x\}, \tag{2.22}
\end{equation*}
$$

which denotes the largest integer smaller than x, and $\hat{x}=x-\lfloor x\rfloor$ is the fractional part of x.
It then follows that all terms in the sum (2.20) with $p \geq 0$ are positive, while the ones with $p<0$ are negative, allowing us to write:

$$
\begin{equation*}
\eta_{j}[s]=\sum_{p \geq 0} \frac{1}{\left.\hat{a}_{j}+p\right)^{s}}-\sum_{p \geq 0} \frac{1}{\left(p+1-\hat{a}_{j}\right)^{s}}=\zeta\left(s, \hat{a}_{j}\right)-\zeta\left(s, 1-\hat{a}_{j}\right), \tag{2.23}
\end{equation*}
$$

where $\zeta(s, x)$ is the incomplete zeta-function. Finally [15], since $\zeta(0, x)=\frac{1}{2}-x$, we find our final expression for $\eta_{j}[0]$:

$$
\begin{equation*}
\eta_{j}[0]=\frac{1}{2}-\hat{a}_{j}-\left(\frac{1}{2}-\left(1-\hat{a}_{j}\right)\right)=1-2 \hat{a}_{j}=1-2 \frac{\hat{v}_{j} L}{2 \pi}+2\left\lfloor\frac{\hat{v}_{j} L}{2 \pi}\right\rfloor . \tag{2.24}
\end{equation*}
$$

For another calculation of the η-invariant, see appendix A.
From (2.24), the surface term contribution (2.15) to the index for the fundamental representation of $\mathrm{SU}(N)$ becomes:

$$
\begin{equation*}
I_{\text {fund. }}^{1}(0)=-\sum_{j=1}^{N}\left(n_{j}-n_{j-1}\right)\left(\frac{1}{2}-\frac{\hat{v}_{j} L}{2 \pi}+\left\lfloor\frac{\hat{v}_{j} L}{2 \pi}\right\rfloor\right) . \tag{2.25}
\end{equation*}
$$

[^3]
2.1.2 Topological charge contribution

Consider now the second term in (2.11) - the topological charge contribution to the index, which is well-known to be a surface term:

$$
\begin{equation*}
I_{\mathcal{R}}^{2}(0)=-2 T(\mathcal{R}) Q=-\frac{T(\mathcal{R})}{16 \pi^{2}} \int d^{3} x \int_{0}^{L} d y G_{\mu \nu}^{a} \tilde{G}_{\mu \nu}^{a}=-\frac{T(\mathcal{R})}{16 \pi^{2}} \int_{0}^{L} d y \int_{S_{\infty}^{2}} d^{2} \sigma^{m} K^{m} \tag{2.26}
\end{equation*}
$$

The topological current is:

$$
\begin{equation*}
K^{\mu}=4 \epsilon^{\mu \nu \lambda \kappa} \operatorname{tr}\left(A_{\nu} \partial_{\lambda} A_{\kappa}+\frac{2 i}{3} A_{\nu} A_{\lambda} A_{\kappa}\right) \tag{2.27}
\end{equation*}
$$

In writing the surface integral in (2.26), we used the fact that for the static BPS background K^{μ} is a periodic function of y. To evaluate (2.26) we note that the spatial component of K^{μ} can be rewritten as:

$$
\begin{equation*}
K^{m}=4 \epsilon^{m i j} \operatorname{tr}\left(A_{4} F_{i j}-A_{i} \partial_{4} A_{j}-\partial_{i}\left(A_{4} A_{j}\right)\right) \tag{2.28}
\end{equation*}
$$

Now we use $\epsilon^{i j k} F_{j k}=2 B^{i}$ and the fact that in the static anti self-dual BPS background (1.8), (1.10), assuming $\mathrm{SU}(2)$ for now, $\left.8 \operatorname{tr} A_{4} B_{m}\right|_{\infty}=-8 v \frac{\hat{r}^{m}}{r^{2}} \hat{r}^{b} \hat{r}^{c} \operatorname{tr} T^{b} T^{c}=-4 v \frac{\hat{r}^{m}}{r^{2}}$. Thus, the only contribution to the surface integral (2.26) comes from the first term in K^{m}, yielding, for $T(\mathcal{R})=1 / 2$:

$$
\begin{equation*}
I_{\text {fund., SU(2) }}^{2}(0)=\frac{1}{32 \pi^{2}} 4 \pi L 4 v=\frac{L v}{2 \pi} \tag{2.29}
\end{equation*}
$$

This is, of course, the known result for the negative of the topological charge of an anti self-dual BPS monopole.

To obtain the $\mathrm{SU}(N)$ result in the multimonopole background, it is best to transform the surface integral (2.26) to string gauge and use (1.11), (1.17). The singular nature of the static gauge transformation does not change the periodicity of K_{μ} used in (2.26) and does not affect the surface integral. ${ }^{5}$ Thus, for an arbitrary representation of $\mathrm{SU}(N)$ the topological charge contribution to the index is:

$$
\begin{align*}
I_{\mathcal{R}}^{2}(0) & =-\frac{T(\mathcal{R})}{16 \pi^{2}} \int_{0}^{L} d y \int_{S_{\infty}^{2}} d^{2} \sigma^{m} 8 \operatorname{tr}\left[A_{4} B_{m}\right] \\
& =-2 T(\mathcal{R}) \sum_{j=1}^{N}\left(n_{j}-n_{j-1}\right) \frac{L \hat{v}_{j}}{2 \pi} \tag{2.30}
\end{align*}
$$

2.1.3 The final expression for the index

Combining the two contributions to the index, eqs. (2.30) and (2.25), gives our final formula for the index. Note that neither the topological charge contribution (2.30), nor the surface term (2.25) is an integer. However, in the combined result, the non-integer parts coming

[^4]from the two cancel neatly. With some work, our expression can also be extracted from the formulae in the appendix of [13]; it was derived here in a physicists' manner by using eq. (2.5), the axial-current non-conservation which is an exact operator identity valid on any 4 -manifold. In this respect, our derivation is a natural generalization of $[8]$.

For the fundamental representation of $\operatorname{SU}(N)$, adding (2.30) to (2.25), the index is:

$$
\begin{align*}
I_{\text {fund. }}\left(n_{1}, n_{2}, \ldots, n_{N-1}\right) & =-\sum_{j=1}^{N}\left(n_{j}-n_{j-1}\right)\left(\frac{1}{2}+\left\lfloor\frac{L \hat{v}_{j}}{2 \pi}\right\rfloor\right), \\
& =-\sum_{j=1}^{N-1} n_{j}\left(\left\lfloor\frac{L \hat{v}_{j}}{2 \pi}\right\rfloor-\left\lfloor\frac{L \hat{v}_{j+1}}{2 \pi}\right\rfloor\right), \tag{2.31}
\end{align*}
$$

where in the first line, as usual $n_{N}=n_{0}=0$.
It is fairly easy to extract the Callias index theorem from (2.31). Let us restrict $-\pi<L \hat{v}_{j}<\pi$ for all j. Then, $\frac{1}{2}+\left\lfloor\frac{L \hat{v}_{j}}{2 \pi}\right\rfloor=\frac{1}{2} \operatorname{sign}\left(\hat{v}_{j}\right)$ and (2.31) reduces to:

$$
\begin{equation*}
I_{\text {fund. }}\left(n_{1}, n_{2}, \ldots, n_{N-1}\right)=-\frac{1}{2} \sum_{j=1}^{N}\left(n_{j}-n_{j-1}\right) \operatorname{sign}\left(\hat{v}_{j}\right)=n_{j *}, \tag{2.32}
\end{equation*}
$$

where $\hat{v}_{j *}<0<\hat{v}_{j *+1}$ and we used the the ordering of the holonomies' eigenvalues, eq. (2.32). In other words the fundamental representation fermion zero mode localizes at the $j^{* t h}$ fundamental monopole, the known Callias index result.

2.2 The index in a "winding" BPS-KK monopole background

Another class of solutions that is crucial for describing the nonperturbative dynamics for nonzero L are the Kaluza-Klein monopoles, arising because of the compact nature of the "Higgs" field [16, 17]; see [18] for a semiclassical calculation elucidating their role in supersymmetric gluodynamics.

Let us recall the construction of the KK monopole solution corresponding to the "affine" root (1.14) of the $\operatorname{SU}(N)$ Lie algebra. We will construct the solution in analogy with the simple root monopoles given in section 1.3. To begin, note that we can rewrite the holonomy (1.11) as follows:

$$
\begin{equation*}
A_{4}=-\tilde{V} \tau^{3}+\operatorname{diag}\left(V, \hat{v}_{2}, \ldots, \ldots, \hat{v}_{N-1}, V\right) \tag{2.33}
\end{equation*}
$$

where now $V=\frac{1}{2}\left(\hat{v}_{N}+\hat{v}_{1}\right)$ and $\tilde{V}=\hat{v}_{N}-\hat{v}_{1}$. We take an $\operatorname{SU}(2)$ embedding in $\operatorname{SU}(N)$ via $\tau^{1,2,3}$ as:

$$
\begin{array}{ll}
\left(\tau^{1}\right)_{i j}=\frac{1}{2}\left(\delta_{i 1} \delta_{j N}+\delta_{i N} \delta_{j 1}\right), & \left(\tau^{2}\right)_{i j}=\frac{1}{2}\left(-i \delta_{i 1} \delta_{j N}+i \delta_{i N} \delta_{j 1}\right), \\
\left(\tau^{3}\right)_{i j}=\frac{1}{2}\left(\delta_{i 1} \delta_{j 1}-\delta_{i N} \delta_{j N}\right), & i, j=1, \ldots, N . \tag{2.34}
\end{array}
$$

Clearly, the static self-dual monopole solution is, in complete analogy with the simple-root solutions (1.16):

$$
\begin{align*}
A_{4} & =\hat{r}^{a} f(r, \tilde{V}) \tau^{a}+\operatorname{diag}\left(V, \hat{v}_{2}, \ldots, \hat{v}_{N-1}, V\right), \\
A_{m} & =\epsilon_{m b a} \hat{r}^{b} g(r, \tilde{V}) \tau^{a} \tag{2.35}
\end{align*}
$$

In the class of static solutions (2.35) is not a fundamental monopole but can be thought as a composite of the fundamental solutions based on simple roots. However, in theories with compact Higgs fields it can be used to construct the Kaluza-Klein monopole. To begin, note that the non-periodic "gauge transformation," ${ }^{6}$ defined via our fundamental $\mathrm{SU}(2)$ generator τ^{3} embedded in $\mathrm{SU}(N)$ as described above:

$$
\begin{align*}
U_{1}(y) & =e^{-i \frac{2 \pi y}{L} \tau^{3}}=\operatorname{diag}\left(e^{-i \frac{\pi y}{L}}, 1, \ldots, 1, e^{i \frac{\pi y}{L}}\right) \\
U_{1}(y+L) & =\operatorname{diag}(-1,1, \ldots, 1,-1) U_{1}(y) \tag{2.36}
\end{align*}
$$

transforms periodic adjoint fields into periodic fields. At the same time, the asymptotic value of A_{4} is shifted by $U_{1}(y)$:

$$
\begin{equation*}
A_{4}^{U_{1}}=A_{4}+\frac{2 \pi}{L} \tau^{3}=-\left(\tilde{V}-\frac{2 \pi}{L}\right) \tau^{3}+\operatorname{diag}\left(V, \hat{v}_{2}, \ldots \hat{v}_{N-1}, V\right) \tag{2.37}
\end{equation*}
$$

To construct the affine KK monopole, one starts with the static monopole solution (2.35) in a vacuum (2.33) with \tilde{V} replaced by $\tilde{V}^{\prime}=\frac{2 \pi}{L}-\tilde{V}$. Denote by $A_{\mu}\left(\tilde{V}^{\prime}\right), \mu=(4, m)$, the just described solution (2.35) in a vacuum given by $\tilde{V} \rightarrow \tilde{V}^{\prime}$. Then one defines the field configuration:

$$
\begin{equation*}
A_{\mu}^{K K}(\tilde{V})=U_{2}\left(A_{\mu}\left(\tilde{V}^{\prime}\right)\right)^{U_{1}} U_{2}^{\dagger}=U_{2} U_{1}\left(A_{\mu}\left(\tilde{V}^{\prime}\right)-i \partial_{\mu}\right) U_{1}^{\dagger} U_{2}^{\dagger} \tag{2.38}
\end{equation*}
$$

Here U_{2} is essentially the unit matrix except for its $11, N N, 1 N$, and $N 1$, elements, explicitly:

$$
U_{2} \equiv\left(\begin{array}{ccccc}
0 & & & & 1 \tag{2.39}\\
& 1 & & & \\
& & 1 & & \\
& & \cdots & & \\
& & & 1 & \\
-1 & & & 0
\end{array}\right)
$$

The point of (2.38) is that transforming $A_{\mu}\left(\tilde{V}^{\prime}\right)$ with U_{1} leads to a twisted (i.e. y-dependent) solution in the vacuum with asymptotics given by (2.33) with \tilde{V} replaced by $\tilde{V}^{\prime}-\frac{2 \pi}{L}=$ $-\tilde{V}$. The role of the U_{2} transformation acting on A_{4} is to flip the sign of \tilde{V} and thus generate a solution in the desired vacuum (2.33). The A_{4} asymptotics of the KK monopole solution $A_{\mu}^{K K}$ is thus the desired (2.33), while the B-field flips sign at infinity due to the U_{2} conjugation. Thus the KK monopole solution has magnetic charge opposite that of the corresponding anti self dual solution - its magnetic charge given by the affine root (1.14) and asymptotics (for n_{N} copies of the solution):

$$
\begin{align*}
\left.B_{K K}^{m}\right|_{\infty} & =-n_{N} \frac{\hat{x}^{m}}{|x|^{2}} \sum_{i=1}^{N}\left(\alpha_{i} \cdot \mathbf{H}\right) \\
& =\frac{n_{N}}{2} \frac{\hat{x}^{m}}{|x|^{2}} \operatorname{diag}(-1,0, \ldots, 0, \ldots, 1) \tag{2.40}
\end{align*}
$$

[^5]To find the topological charge of the KK monopole, eq. (2.38) plus gauge covariance of the field strength allow us to argue that:

$$
\begin{align*}
Q & =\frac{1}{32 \pi^{2}} \int d^{3} x d y G_{\mu \nu}^{a} \tilde{G}_{\mu \nu}^{a}\left[A^{K K}(\tilde{V})\right]=\frac{1}{32 \pi^{2}} \int d^{3} x d y G_{\mu \nu}^{a} \tilde{G}_{\mu \nu}^{a}\left[A^{P S}\left(\tilde{V}^{\prime}\right)\right] \\
& =\frac{L}{4 \pi^{2}} \int_{S_{\infty}^{2}} d^{2} \sigma^{m} \operatorname{tr} A_{4}\left(\tilde{V}^{\prime}\right) B_{P S}^{m}=-n_{N} \frac{\tilde{V}^{\prime} L}{2 \pi}=-n_{N}\left(1-\frac{\tilde{V} L}{2 \pi}\right), \tag{2.41}
\end{align*}
$$

the calculation in complete analogy with (2.30), using the asymptotics of A_{4}, eq. (2.33) with $\tilde{V} \rightarrow \tilde{V}^{\prime}$, and of $B_{P S}^{m}=-B_{K K}^{m}$ of (2.40). Thus, remembering from eq. (2.26) that $I_{\mathcal{R}}^{2}=-2 T(\mathcal{R}) Q$, we obtain that for $n_{N} \mathrm{KK}$ monopoles, the topological charge contribution to the index is:

$$
\begin{equation*}
I_{\mathcal{R}}^{2, K K}(0)=2 T(\mathcal{R}) n_{N}\left(1-\frac{\tilde{V} L}{2 \pi}\right) \tag{2.42}
\end{equation*}
$$

The computation of the surface term $I_{\mathcal{R}}^{1}(0)$ is also simplified by the fact that the asymptotics of the KK monopole solution at infinity are x_{4} independent and are, as explained above, the same as those for the PS monopole, except for a switch in the sign of the magnetic field. Thus, despite the fact that in the "bulk" the solution is twisted around S^{1}, we can still use (2.13) to calculate the surface term contribution. Substituting eqs. (2.40) and (1.11) into (2.13), we obtain for the fundamental representation of $\operatorname{SU}(N)$, instead of (2.25):

$$
\begin{equation*}
I_{\text {fund. }}^{1, K K}(0)=n_{N}\left(\frac{\tilde{V} L}{2 \pi}-\left\lfloor\frac{\hat{v}_{N} L}{2 \pi}\right\rfloor+\left\lfloor\frac{\hat{v}_{1} L}{2 \pi}\right\rfloor\right) . \tag{2.43}
\end{equation*}
$$

Combined with (2.42), this gives for the total index of the KK monopole:

$$
\begin{equation*}
I_{\text {fund. }}^{K K}(0)=n_{N}\left(1-\left\lfloor\frac{\hat{v}_{N} L}{2 \pi}\right\rfloor+\left\lfloor\frac{\hat{v}_{1} L}{2 \pi}\right\rfloor\right) \tag{2.44}
\end{equation*}
$$

In the case where for all j the holonomies obey $\left|\hat{v}_{j}\right|<\frac{\pi}{L}$, taking into account our ordering of the holonomy (1.11) $\left(\hat{v}_{1}<0, \hat{v}_{N}>0\right)$, we have, for $n_{N}=1$, that $I_{f u n d}^{K K}=0$. Recall from the discussion around eq. (2.32) that in the background of $n_{1}, n_{2}, \ldots, n_{N-1}$ monopoles corresponding to the $1^{\text {st }}, 2^{\text {nd }}$, etc., simple roots there are $n_{j^{*}}$ fermionic zero modes, where j^{*} is the position of the last negative \hat{v}_{j} from (1.11). Thus, the combination of a $n_{j^{*}}=1$ monopole and an $n_{N}=1 \mathrm{KK}$ monopole have a combined number of zero modes equal to that of a four-dimensional BPST (anti) instanton (one for the fundamental of $\operatorname{SU}(N)$); the sum of their topological charges also adds to minus one.

At this stage, we can also combine (2.31) and (2.44) into a single formula:

$$
\begin{align*}
I_{\text {fund. }}\left[n_{1}, n_{2}, \ldots, n_{N-1}, n_{N}\right] & =I_{\text {fund. }}\left(n_{1}, n_{2}, \ldots, n_{N-1}\right)+I_{\text {fund. }}^{K K}\left(n_{N}\right) \\
& =n_{N}-\sum_{j=1}^{N} n_{j}\left(\left\lfloor\frac{L \hat{v}_{j}}{2 \pi}\right\rfloor-\left\lfloor\frac{L \hat{v}_{j+1}}{2 \pi}\right\rfloor\right) . \tag{2.45}
\end{align*}
$$

where $L \hat{v}_{N+1} \equiv L \hat{v}_{1}$.

$3 \mathrm{SU}(2)$ with arbitrary representation fermions

The calculation of the index is particularly simple for arbitrary representations of $\mathrm{SU}(2)$. Consider, for example, a Weyl fermion in the spin- j representation of $\mathrm{SU}(2)$ in the static BPS background. The asymptotic form of the A_{4} and magnetic fields are:

$$
\begin{equation*}
\left.A_{4}\right|_{\infty}=-v\left(T^{3}\right)_{j}=-v \operatorname{diag}(j, j-1, \ldots,-j),\left.\quad B^{m}\right|_{\infty}=\frac{\hat{x}^{m}}{|x|^{2}}\left(T^{3}\right)_{j} \tag{3.1}
\end{equation*}
$$

where we set $n_{1}=1$ for simplicity. The index receives contribution from the surface term (2.15) and topological charge (2.26). Instead of (2.15), we now have:

$$
\begin{equation*}
I_{j}^{1}(0)=-\sum_{m=-j}^{j} m \sum_{p=-\infty}^{\infty} \operatorname{sign}\left(-v m+\frac{2 \pi p}{L}\right), \tag{3.2}
\end{equation*}
$$

where the minus sign in the sign-function is because in our convention the holonomy at infinity is $A_{4} \simeq-v T^{3}$. We perform the KK sum in a way similar to (2.24) to obtain:

$$
\begin{equation*}
I_{j}^{1}(0)=\sum_{m=-j}^{j}-m^{2} \frac{v L}{\pi}-2 m\left\lfloor-\frac{v m L}{2 \pi}\right\rfloor . \tag{3.3}
\end{equation*}
$$

For the topological charge contribution, we can use the first line of (2.30) and following the steps that led to (2.29), we obtain:

$$
\begin{equation*}
I_{j}^{2}(0)=2 T(j) \frac{L v}{2 \pi} \tag{3.4}
\end{equation*}
$$

Recall that for the spin- j representation of $\mathrm{SU}(2)$, the Casimir is given by $T(j)=\sum_{m=-j}^{j} m^{2}=$ $\frac{1}{3} j(j+1)(2 j+1)$. Therefore, summing over the two contributions (3.3) and (3.4) to the index, we find:

$$
\begin{equation*}
I_{j}(0)=\sum_{m=-j}^{j} 2 m\left(-\frac{m v L}{2 \pi}-\left\lfloor-\frac{m v L}{2 \pi}\right\rfloor\right)+2 T(j) \frac{L v}{2 \pi}=-\sum_{m=-j}^{j} 2 m\left\lfloor-\frac{m v L}{2 \pi}\right\rfloor \tag{3.5}
\end{equation*}
$$

The relation between the index for the BPS monopole and KK monopole is also especially simple in $S U(2)$, where there are only two kinds of monopoles; in the spin- j representation the index in the KK monopole background can be obtained by using techniques of the section (2.2), with the result:

$$
\begin{equation*}
I_{j}^{K K}=2 T(j)-I_{j} \tag{3.6}
\end{equation*}
$$

where I_{j} is the index of the j-representation in the monopole field and $2 T(j)$ is the number of zero modes in a BPST instanton background.

Let the number of monopoles and KK monopoles in a given background be, respectively, n_{1} and n_{2}. The main result of this section is captured in the index and the topological charge formulae:

$$
\begin{align*}
& I_{j}\left[n_{1}, n_{2}\right]=n_{1} I_{j}+n_{2} I_{j}^{K K}=n_{2} 2 T(j)-\left(n_{1}-n_{2}\right) \sum_{m=-j}^{j} 2 m\left\lfloor-\frac{m v L}{2 \pi}\right\rfloor, \\
& Q\left[n_{1}, n_{2}\right]=n_{1} Q^{B P S}+n_{2} Q^{K K}=-n_{2}+\left(n_{2}-n_{1}\right) \frac{v L}{2 \pi} . \tag{3.7}
\end{align*}
$$

We consider now as an example the three lowest representations of $\mathrm{SU}(2)$. We already discussed the fundamental representation of $\operatorname{SU}(N)$. In the appendix, we give expressions for other $\operatorname{SU}(N)$ representations of interest.

Index for the fundamental $(j=\mathbf{1} / \mathbf{2})$. We have, from (3.5):

$$
\begin{equation*}
I_{1 / 2}(0)=-\left\lfloor-\frac{v L}{4 \pi}\right\rfloor+\left\lfloor\frac{v L}{4 \pi}\right\rfloor . \tag{3.8}
\end{equation*}
$$

Begin with the case $0<v<\frac{4 \pi}{L}$, when we obtain $I_{1 / 2}=1$. That this is so can be easily verified by explicitly solving the zero mode equation for the Weyl operator D in the PS background [19]. This is also the result of the Callias index theorem on R^{3}, as expected on physical grounds when L is small and the scale v of $\mathrm{SU}(2)$-breaking is below the KK scale.

Upon increasing v, taking $\frac{4 \pi}{L}<v<\frac{8 \pi}{L}$, we have $I_{1 / 2}=3$. More generally, eq. (3.8) implies that the index jumps by two every time v crosses another $\frac{4 \pi}{L}$ threshold. This jump of the index occurs because every time v increases by $\frac{4 \pi}{L}$, two zero-mode solutions with nonvanishing KK number become normalizable. This jump of the index can be easily seen explicitly by considering the normalizability of the zero-mode solutions of the $D(A) \psi=0$ Weyl equation in the static PS background on $S^{1} \times R^{3}$, along the lines of the appendix of ref. [9].

Index for the adjoint $(j=1)$. Now we have from (3.5):

$$
\begin{equation*}
I_{1}(0)=-2\left\lfloor-\frac{v L}{2 \pi}\right\rfloor+2\left\lfloor\frac{v L}{2 \pi}\right\rfloor . \tag{3.9}
\end{equation*}
$$

Begin with $0<v<\frac{2 \pi}{L}$, where $I_{1}(0)=2$, the well-known value in three dimensions. As we increase $\frac{2 \pi}{L}<v<\frac{4 \pi}{L}$, we obtain $I_{1}(0)=6$. Thus, the index jumps by 4 every time v crosses a KK threshold. Again, this is because as v passes beyond $\frac{2 \pi}{L}$ every $L=0$ normalizable zero mode acquires two more normalizable KK partners.

Index for three-index symmetric tensor $(j=3 / 2)$. Our final example is the threeindex symmetric tensor $(j=3 / 2$ of $\operatorname{SU}(2))$. This representation alone is free of a Witten anomaly and gives an example of a chiral four-dimensional theory with interesting nonperturbative dynamics. The index of the representation is $T(3 / 2)=5$. For this case (3.5) implies that the index is:

$$
\begin{equation*}
I_{3 / 2}(0)=-3\left\lfloor-\frac{3 v L}{4 \pi}\right\rfloor-\left\lfloor-\frac{v L}{4 \pi}\right\rfloor+3\left\lfloor\frac{3 v L}{4 \pi}\right\rfloor+\left\lfloor\frac{v L}{4 \pi}\right\rfloor . \tag{3.10}
\end{equation*}
$$

For $0<v<\frac{4 \pi}{3 L}$, where $I_{3 / 2}(0)=4$, as on R^{3}. As v increases across the first KK threshold to $\frac{4 \pi}{3 L}<v<\frac{8 \pi}{3 L}$, we have $I_{3 / 2}=10$-a jump of the index by 6 . As v crosses the next threshold $\frac{8 \pi}{3 L}<v<\frac{4 \pi}{L}$, we similarly find that the index jumps by 6 , giving $I_{3 / 2}(0)=16$. Similarly to the previous cases, the jumps are interpreted as due to more KK-fermion zero modes becoming normalizable as v increases through each threshold.

4 Interpolating from Callias to APS index

It is useful to put together the results for the index theorem on $R^{3} \times S^{1}$ and see how it interpolates between the Callias index theorem on R^{3} and the APS index theorem on R^{4}. This will also provide a crisp notion of an elementary versus composite topological excitation on $R^{3} \times S^{1}$. In order to study these excitations, it is useful to recall some basic facts about the root system of a Lie algebra and the distinction between the simple root system and affine root system.

For a given Lie algebra, we can construct all roots Δ, positive roots Δ^{+}, and simple positive roots Δ^{0}, satisfying $\Delta \supset \Delta^{+} \supset \Delta^{0}$. For example, all roots in Δ^{+}can be written as positive linear combinations of simple roots which constitute Δ^{0} :

$$
\begin{equation*}
\Delta^{0}=\left\{\alpha_{1}, \ldots, \alpha_{N-1}\right\}, \tag{4.1}
\end{equation*}
$$

where α_{i} are $N-1$ linearly independent simple roots. The simple root system is useful in the discussion of the elementary static monopoles, and the discussion of index theorems on R^{3}.

On $R^{3} \times S^{1}$, there is an extra monopole, the KK-monopole, which is on the same footing with the monopoles. The existence of this extra topological excitation is significant in multiple ways. For example, as it will be seen below, one can only construct the four dimensional BPST instanton out of the "constituent monopoles" due to the existence of the KK monopole. Incorporating the KK-monopole into the set of "elementary" monopoles also has a simple realization in terms of Lie algebra. There is a unique extended root system (or extended Dynkin diagram) for each Δ^{0}, which is obtained by adding the lowest root to the system Δ^{0} :

$$
\begin{equation*}
\Delta_{\text {aff }}^{0}=\Delta^{0} \cup\left\{\alpha_{N}\right\} \equiv\left\{\alpha_{1}, \ldots, \alpha_{N-1}, \alpha_{N}\right\} \tag{4.2}
\end{equation*}
$$

Let n_{1}, \ldots, n_{N} denote the number of elementary monopoles whose charges are proportional to $\alpha_{1}, \ldots, \alpha_{N} \in \Delta_{\text {aff }}^{0}$, respectively. The Callias index on R^{3}, for sufficiently small $\left|\hat{v}_{j} L\right|$, is equal to the index of the Dirac operator on $R^{3} \times S^{1}$ for elementary monopoles with charges taking values in the simple root system Δ_{0}, i.e.:

$$
\begin{equation*}
I_{R^{3}}\left[n_{1}, \ldots, n_{N-1}, 0\right]=I_{R^{3} \times S^{1}}\left[n_{1}, \ldots, n_{N-1}, 0\right] . \tag{4.3}
\end{equation*}
$$

This is already demonstrated in obtaining (2.32) from (2.31) by using $\left|\hat{v}_{j} L\right| \leq \pi$.
We now discuss the relation between the APS index for the BPST instanton and the index theorem on $R^{3} \times S^{1}$. The result is:

$$
\begin{equation*}
I_{\text {instanton }}=I_{R^{3} \times S^{1}}[1,1, \ldots, 1,1]=\sum_{i=1}^{N} I_{R^{3} \times S^{1}}[0, \ldots, \underbrace{1}_{i^{\text {th }}}, \ldots, 0] \tag{4.4}
\end{equation*}
$$

The proof of this statement necessitates a convenient rewriting of the index for the "static" (2.31) and "winding" (2.43) solutions. The important technical detail to keep in mind is that for static solutions (2.31), we set $n_{0}=n_{N}=0$. The index formula for $\left[n_{1}, \ldots, n_{N}\right.$] monopoles takes the simple form:

We also need to show that the topological excitation for which $\left[n_{1}, \ldots, n_{N}\right]=[1, \ldots, 1]$ corresponds to the BPST instanton. It is obvious that the magnetic charge of such an excitation is identically zero, $\sum_{i=1}^{N} \alpha_{i}=0$. We also need to show that the topological charge adds up to the one of a BPST instanton. Using formula (2.30) for static BPS monopoles (and setting $n_{0}=n_{N}=0$ therein) and (2.41) for the KK monopole, we obtain the topological charge of the excitation:

$$
\begin{equation*}
Q\left[n_{1}, \ldots, n_{N}\right]=-n_{N}+\sum_{i=1}^{N} n_{i}\left(\frac{L \hat{v}_{i}}{2 \pi}-\frac{L \hat{v}_{i+1}}{2 \pi}\right) . \tag{4.6}
\end{equation*}
$$

For $\left[n_{1}, \ldots, n_{N}\right]=k[1, \ldots, 1]$, the topological charge is integer valued with no dependence on the specific values of v_{i}. This is indeed the instanton with winding number k. For index theorem aficionados, eq. (4.4) can also be expressed as:

$$
\begin{equation*}
\operatorname{dim} \operatorname{ker} \not D_{\mathrm{inst}}-\operatorname{dim} \operatorname{ker} \not \mathscr{D}_{\mathrm{inst}}^{\dagger}=\sum_{\alpha_{i} \in \Delta_{\mathrm{aff}}^{0}}\left(\operatorname{dim} \operatorname{ker} \not D_{\alpha_{i}}-\operatorname{dim} \operatorname{ker} \not D_{\alpha_{i}}^{\dagger}\right) \tag{4.7}
\end{equation*}
$$

It is evident that the index for Dirac operators on $S^{1} \times R^{3}$ has more refined data than the familiar APS index theorem for instantons on R^{4}.

Remark on some special cases. In the derivation of the index theorem for the Dirac operator in the background of a monopole, we used the local axial-current nonconservation (2.5), which is an exact operator identity valid on any four-manifold, and a certain boundary Wilson line $\left.A_{4}\right|_{\infty}$ (1.11). In fact, the index is only well-defined for invertible $\left.A_{4}\right|_{\infty}$. In this case, the corresponding Dirac operator is called a Fredholm operator. An eigenvalue of $\left.A_{4}\right|_{\infty}$ can always be rotated to zero by turning on an over-all Wilson line as in (1.12), which corresponds to a non-Fredholm operator. In those cases, the index for the monopole as well as the η-invariant are not well-defined.

What happens physically as the overall $\mathrm{U}(1)$ Wilson line is dialed? In that case, in eq. (4.5), we replace $\hat{v}_{j} \rightarrow \hat{v}_{j}+\frac{1}{\sqrt{2 N}} a_{0}$ following eq. (1.12). As a_{0} is dialed smoothly, the fermionic zero mode will jump from the monopole it is localized into (say, with charge $\alpha_{j *}$) to a monopole which is nearest neighbor, $\alpha_{j * \pm 1}$, depending on the sign of the a_{0}. In the mean time, note that the index for the BPST instanton $I_{\text {instanton }}=I_{R^{3} \times S^{1}}[1,1, \ldots, 1,1]$ in eq. (4.4) should remain invariant. As the normalizable zero mode jumps from $\alpha_{j *}$ to $\alpha_{j * \pm 1}$, exactly at the value of a_{0} where one of the eigenvalues becomes zero, a non-normalizable zero mode appears and the exponential decay of the zero mode wave function is replaced by a power law decay of the three dimensional massless fermion propagator.

5 Remarks on anomalies and induced Chern-Simons terms on $R^{3} \times S^{1}$

Consider a chiral four-dimensional gauge theory compactified on $R^{3} \times S^{1}$. In the limit of zero radius, one expects that a generic theory on R^{3} with complex-representation fermions will violate three dimensional parity. This is because the R^{3} theory can not be regulated by Pauli-Villars (PV) fields in a simultaneously parity- and gauge-invariant manner.

For example, in the $\operatorname{SU}(5)$ theory with left-handed Weyl fermions in the $\mathbf{5}$ and $\mathbf{1 0}^{*}$, compactified to R^{3}, four-dimensional Lorentz and gauge invariance would forbid mass
terms for the fermions, but on R^{3} real mass terms are allowed. Real mass terms in three dimensions can be thought of as expectation values of the A_{4} (Wilson line) components of background $\mathrm{U}(1)$ gauge fields gauging global chiral symmetries. These mass terms are gauge invariant but break three dimensional parity. On R^{3}, one can regulate the theory in a gauge invariant manner via real-mass Pauli-Villars fields in the $\mathbf{5}$ and $\mathbf{1 0}^{*}$. It is a well-known result [20] that every PV regulator gives rise to a Chern-Simons (CS) term, proportional to the index of the representation ($1 / 2$ for $\mathbf{5}$ and $3 / 2$ for $\mathbf{1 0}^{*}$) and to the sign of its mass. Thus, at one loop, the fermion effective action has a parity-violating CS term, whose coefficient is 1 or 2 , depending on the chosen relative sign of the two PV mass terms. This CS term does not give rise to a "parity anomaly," which would require the addition of a gauge-noninvariant bare half-integer coefficient CS term, since the integer coefficient assures its invariance under gauge transformations with nontrivial $\pi_{3}(G)$ (for a brief reminder of the quantization of the CS coefficient, see the footnote in the beginning of section 5.1). However, it gives a topological mass term to the gauge boson. If a bare CS term with integer coefficient is added, the CS coefficient becomes a free parameter of the three dimensional "chiral" gauge theory. When the gauge group is broken to its maximal Abelian subgroup (by an adjoint Higgs field, as in the applications we have in mind) this will give rise to CS terms with quantized coefficients for the various $\mathrm{U}(1)$.

5.1 Loop-induced Chern-Simons terms on $R^{3} \times S^{1}$

Now, consider the same theory on the locally four-dimensional background $R^{3} \times S^{1}$. PV regulators with complex masses are not allowed by gauge invariance, while a real mass due to a Wilson-line expectation value is neither local nor Lorentz invariant. Hence, we are led to reconsider the calculation of the CS term, this time on $R^{3} \times S^{1}$. We would like to know whether such a term is generated and what the freedom in the CS coefficient found in the R^{3} case corresponds to on $R^{3} \times S^{1}$. Our main interest is in the case when the gauge group is broken to its maximal Abelian subgroup by the nontrivial holonomy on S^{1}. Thus, consider the loop-induced CS coefficient $k_{a b}$:

$$
\begin{equation*}
S_{C S}=\int d^{3} x \frac{k_{a b}}{8 \pi} \epsilon_{l i m} A_{l}^{a} \partial_{i} A_{m}^{b}, \tag{5.1}
\end{equation*}
$$

where a and b run over the Cartan generators of the gauge group. ${ }^{7}$ A straightforward loop calculation of $k_{a b}$ in the background holonomy A_{4} gives:

$$
\begin{align*}
k_{a b} & =\sum_{n=-\infty}^{\infty} \int \frac{d^{3} k}{\pi^{2}} \operatorname{tr} T^{a} \frac{1}{k^{2}+\left(A_{4}+\frac{2 \pi n}{L}\right)^{2}} T^{b} \frac{\left(A_{4}+\frac{2 \pi n}{L}\right)}{k^{2}+\left(A_{4}+\frac{2 \pi n}{L}\right)^{2}} \\
& =\operatorname{tr} T^{a} T^{b} \sum_{n=-\infty}^{\infty} \operatorname{sign}\left(A_{4}+\frac{2 \pi n}{L}\right), \tag{5.2}
\end{align*}
$$

[^6]where a sum over all fermion matter representations is understood in the trace. To obtain the second equality we noted that all generators above are in the Cartan and took the momentum integral, leading to a KK sum identical to the one appearing in (2.15). Finally, we regulate the sum via ζ-function as in the calculation of the η-invariant, and obtain:
\[

$$
\begin{equation*}
k_{a b}=\operatorname{tr} T^{a} T^{b} \eta\left[A_{4}, 0\right]=\operatorname{tr} T^{a} T^{b}\left(1-2 \frac{L A_{4}}{2 \pi}+2\left\lfloor\frac{L A_{4}}{2 \pi}\right\rfloor\right), \tag{5.3}
\end{equation*}
$$

\]

where the function $\lfloor\ldots\rfloor$ is applied to each element of the diagonal matrix A_{4}. To further understand (5.3), note that if ${ }^{8}\left|A_{4}\right|<\frac{\pi}{L}$, we have $1-2 \frac{L A_{4}}{2 \pi}+2\left[\frac{L A_{4}}{2 \pi}\right]=-2 \frac{L A_{4}}{2 \pi}+\operatorname{sign} A_{4}$, and that after inserting this in (5.3) and using $k_{a b}=k_{b a}$, we find:

$$
\begin{equation*}
k_{a b}=-\operatorname{tr}\left(\left\{T^{a}, T^{b}\right\} A_{4}\right) \frac{L}{2 \pi}+\operatorname{tr}\left(T^{a} T^{b} \operatorname{sign} A_{4}\right) . \tag{5.4}
\end{equation*}
$$

To understand the meaning of the two terms in (5.4), we now use the decomposition of the sign matrix $\operatorname{sign}\left(A_{4}\right)$ in each representation \mathcal{R} in terms of the unit matrix and Cartan generators:

$$
\begin{equation*}
\operatorname{sign}\left(A_{4 \mathcal{R}}\right)=s^{0} 1+\sum_{c=1}^{r} s^{c} T^{c}, \quad s^{0}=\frac{1}{\operatorname{dim}(\mathcal{R})} \operatorname{tr}_{\mathcal{R}}\left[\operatorname{sign}\left(A_{4}\right)\right], \quad s^{a}=\frac{1}{T(\mathcal{R})} \operatorname{tr}_{\mathcal{R}}\left[\operatorname{sign}\left(A_{4}\right) T^{a}\right], \tag{5.5}
\end{equation*}
$$

and a similar decomposition for the holonomy A_{4} itself:

$$
\begin{equation*}
\left.\frac{A_{4} L}{2 \pi}\right|_{\mathcal{R}}=a^{0} 1+\sum_{c=1}^{r} a^{c} T^{c}, \quad a^{0}=\frac{L}{2 \pi \operatorname{dim}(\mathcal{R})} \operatorname{tr}_{\mathcal{R}}\left[A_{4}\right], \quad a^{c}=\frac{L}{2 \pi T(\mathcal{R})} \operatorname{tr}_{\mathcal{R}}\left[A_{4} T^{c}\right] . \tag{5.6}
\end{equation*}
$$

After inserting these in (5.4), we find:

$$
\begin{equation*}
k_{a b}=\sum_{\mathcal{R}}\left[\operatorname{tr}_{\mathcal{R}}\left(\left\{T^{a}, T^{b}\right\} T^{c}\right)\left(s^{c}-a^{c}\right)+T(\mathcal{R}) \delta_{a b}\left(s^{0}-a^{0}\right)\right] . \tag{5.7}
\end{equation*}
$$

If A_{4} is entirely in the Cartan subalgebra of the gauge group, then $a^{0}=0$. Furthermore, if the sign matrix is traceless $\left(s^{0}=0\right)$-which is the case for $\mathrm{SU}(2 N)$ theories with a center symmetric background - we find that the CS coefficient on $R^{3} \times S^{1}$ is proportional to the coefficient of the gauge anomaly in four dimensions (recall that the anomaly coefficient for a representation \mathcal{R} is $\left.\operatorname{tr}_{\mathcal{R}}\left(\left\{T^{a}, T^{b}\right\} T^{c}\right)\right)$. In this case, we find that for anomaly-free chiral gauge theories in four dimensions there is no loop induced CS term in three dimensions.

It can happen that the sign matrix is not traceless, in which case the only contribution to the CS term is from the second term in (5.4), proportional to $\operatorname{tr} \operatorname{sign} A_{4}$. For example, in anomaly-free $\mathrm{SU}(2 N+1)$ gauge theories with an almost center symmetric holonomy, while the first term in (5.4) vanishes, the second term in (5.4) may still be non-zero. In such cases, one can tune a background Wilson line associated with an axial, non-anomalous $\mathrm{U}(1)$ to isolate a point where CS-term vanishes (an example of this kind is $\mathrm{SU}(5)$ theory with 5 and $1 \mathbf{0}^{*}$).

[^7]In conclusion, we find that the CS coefficient on $R^{3} \times S^{1}$ receives two contributions. The first is a "four-dimensional" one and is given by the first term in (5.4). If the only Wilson lines that are turned on correspond to anomaly-free gauge and global symmetries, the contribution of this term vanishes. On the other hand, turning on Wilson lines corresponding to anomalous symmetries leads to a nonvanishing first term in (5.4) -its origin is in the fourdimensional Wess-Zumino term induced when anomalous background fields are included (the reason the calculation in the nontrivial holonomy phase is so simple is that breaking the gauge symmetry and having massive fermions propagate in the loop allowed us to turn the four dimensional Wess-Zumino term into a local three dimensional CS term). The second, "three-dimensional," contribution [20] is given by the second term in (5.4) and is nonzero only if $\frac{\operatorname{tr} \operatorname{tr}^{\operatorname{sign} A_{4}}}{\operatorname{dim}(\mathcal{R})}$ generates an anomalous $U(1)$ symmetry in the four-dimensional theory.

5.2 Excision of topological excitations and remnant Chern-Simons theories

In the beginning of this section, we found that in the three dimensional reduction of a four dimensional chiral theory, there is freedom to have CS terms with quantized coefficients. Is there similar freedom in the theory on $R^{3} \times S^{1}$? The answer can again be seen from (5.4).

In section 5.1, we assumed that the only Wilson lines turned on are those corresponding to the Cartan generators of the gauge group. We are free, however, to turn on Wilson lines of background $U(1)$ fields gauging global chiral symmetries in four dimensions. These Wilson lines do not break the gauge symmetry, but the symmetries they correspond to are usually anomalous, hence we can use eq. (5.4) to infer the CS coefficient induced when they are turned on. It is clear from (5.4) that, generally, the value of the CS coefficient induced in the nonzero holonomy phase by these "flavor" Wilson lines would not correspond to quantized values, unlike in three dimensions. However, recall that turning on Wilson lines for global symmetries is equivalent, by a field redefinition, to imposing non-periodic boundary conditions on the Weyl fermions in $\mathcal{R},{ }^{9}$

$$
\begin{equation*}
\psi(x, y+L)_{\mathcal{R}}=e^{i \alpha_{\mathcal{R}}} \psi(x, y)_{\mathcal{R}}, \quad \alpha_{\mathcal{R}}=A_{4}^{\mathcal{R}} L \tag{5.8}
\end{equation*}
$$

Consequently, we find from (5.4), assuming that only a $\mathrm{U}(1)$ Wilson line, $A_{4}^{\mathcal{R}}$, is turned on, that:

$$
\begin{equation*}
k_{a b}=\delta_{a b} \sum_{\mathcal{R}}\left(-\frac{2 \alpha_{\mathcal{R}} T(\mathcal{R})}{2 \pi}+T(\mathcal{R}) \operatorname{sign} \alpha_{\mathcal{R}}\right) \equiv \delta_{a b} k(\alpha) . \tag{5.9}
\end{equation*}
$$

The induced CS term is, therefore,

$$
\begin{equation*}
S_{C S}=\frac{k(\alpha)}{4 \pi} \int_{R^{3}} \epsilon^{\nu \lambda \kappa} \operatorname{tr}\left(A_{\nu} \partial_{\lambda} A_{\kappa}+\frac{2 i}{3} A_{\nu} A_{\lambda} A_{\kappa}\right) \tag{5.10}
\end{equation*}
$$

Note that in the case of anomalous-U(1) Wilson lines, the boundary conditions (5.8) would correspond to a symmetry of the action and measure of the theory - hence be admissible as boundary conditions - only if the Wilson lines take quantized values,

$$
\begin{equation*}
2 T(\mathcal{R}) \alpha_{\mathcal{R}}=2 \pi n, n \in \mathbb{Z} \tag{5.11}
\end{equation*}
$$

[^8]implying that admissible boundary conditions for fermions are quantized (such that the 't Hooft vertex is invariant). Thus, the coefficients of the induced CS terms in this case also take quantized values.

Note that the phase structure of gauge theory - massive versus perturbatively massless photons - is affected by turning on such discrete Wilson lines. Since the values are quantized, the one-loop potential for the Wilson line (Casimir energies) should not effect them (discrete Wilson lines are known to appear in string theory, for example as disconnected components on the moduli space of D-branes [21]). Moreover, at nonzero k, the finite action monopole solutions (or other topological excitations, such as magnetic bions pertinent to gauge theories on $S^{1} \times R^{3}$) which would render the gauge fluctuations massive nonperturbatively do not exist; see, e.g., [22]. In this sense, the two types of possible mass terms for gauge fluctuations, parity odd topological CS mass and parity even magnetic monopole or bion induced mass do not mix.

To summarize, since the chiral anomalous $\mathrm{U}(1)$ current is parity odd, the response of gauge theory is to produce a non-gauge invariant CS term at generic values of the background Wilson line. Only at admissible (discrete set of) boundary conditions for fermions, the induced CS term is gauge invariant and sensible, and a parity odd mass term is generated for the gauge theory. At these points, the finite action topological excitation are excised from the gauge theory. If no anomalous $\mathrm{U}(1)$ is turned on, the photon is massless to all orders in perturbation theory, and a parity even mass term can be induced nonperturbatively via topological excitations with zero index, either elementary or composite.

The notion of the disconnected components of the gauge theory "moduli space" may find interesting applications both in physics and mathematics. First, we formulate a QCDlike gauge theory on $\mathcal{M}_{3} \times S_{1}$ where \mathcal{M}_{3} is some three-manifold of arbitrary size, and S_{1} is small. Then, we impose admissible boundary conditions on the (say) adjoint Weyl fermion ${ }^{10}$ by using a "chiral twist" (5.8) obeying (5.11), by taking $\alpha=\frac{2 \pi n}{2 N}$, and assuming that n is a positive integer (this is to say that only a $\mathbb{Z}_{2 N}$ is a anomaly-free remnant of the $\mathrm{U}(1)_{A}$ chiral rotation, and allowed as boundary condition). Integrating out all the heavy KK-modes along the S_{1} circle induces, among other operators, the CS-term (5.10) with coefficient given by (5.9) and equal to $k(\alpha)=N-n$. This means that a CS-term does not get induced for strictly periodic and anti-periodic (thermal) boundary conditions. Otherwise, we expect that the long distance dynamics of these disconnected components of the "moduli space" of QCD-like theories is described by topological CS-theory on \mathcal{M}_{3}. This means that the theory is gapped, and is in a topologically ordered Chern-Simons phases. Up to our knowledge, this is the first derivation of CS-theory and topological phases from QCD-like dynamics. We will pursue this direction in subsequent work.

[^9]
Acknowledgments

We thank M. Shifman for useful discussions. This work was supported by the U.S. Department of Energy Grant DE-AC02-76SF00515 and by the National Science and Engineering Research Council of Canada (NSERC).

Note added. While completing this paper, a new preprint [26] appeared, which discusses the relation between the R-symmetry-twisted boundary conditions (which is a chiral-twist in our nomenclature) and CS theories in supersymmetric $\mathcal{N}=4$ SYM theory. Our discussion in section 5 has some overlaps with the discussion therein.

A Another calculation of the η-invariant

Here we give an alternative computation of $\eta_{j}[0]$ of eq. (2.16). We now use the form [23, 24]:

$$
\begin{equation*}
\eta[0]=\frac{1}{\pi} \lim _{m \rightarrow \infty} \sum_{\lambda} \operatorname{Im} \ln \frac{\lambda+i m}{\lambda-i m}=\frac{1}{\pi} \lim _{m \rightarrow \infty} \operatorname{Im} \ln \operatorname{det} \frac{h+i m}{h-i m}, \tag{A.1}
\end{equation*}
$$

which holds because:

$$
\lim _{m \rightarrow \infty} \frac{\lambda+i m}{\lambda-i m}=\lim _{m \rightarrow \infty} e^{i 2 \operatorname{Arctan}\left(\frac{m}{\lambda}\right)}=e^{i \pi \operatorname{sign} \lambda}
$$

and the branch of the logarithm is defined so that $\ln e^{i \phi}=i \phi$ (zero eigenvalues λ are assumed to not occur; if they do the formula (A.1) is ambiguous and needs to be modified [24]).

Recall from the discussion in paragraph above eq. (2.16) that h is the one-dimensional "massive Dirac operator" $i \frac{d}{d y}+\hat{v}$ whose eigenvalues change sign under the combined $y \rightarrow$ $-y, \hat{v} \rightarrow-\hat{v}$ transformation. Together with (A.1) (or (A.2)) this implies that the spectral asymmetry (A.1) flips sign under $\hat{v} \rightarrow-\hat{v}$. For our operator, $\lambda=\frac{2 \pi n}{L}+\hat{v}$, so we have:

$$
\begin{align*}
\eta[0] & =\frac{1}{\pi} \lim _{m \rightarrow \infty} \sum_{n=-\infty}^{\infty} \operatorname{Im} \ln \frac{\frac{2 \pi n}{L}+\hat{v}+i m}{\frac{2 \pi n}{L}+\hat{v}-i m}=\frac{1}{\pi} \lim _{m \rightarrow \infty} \sum_{n=-\infty}^{\infty} \operatorname{Im} \ln \frac{n+a+i m}{n+a-i m} \\
a & \equiv \frac{L \hat{v}}{2 \pi}-\left\lfloor\frac{L \hat{v}}{2 \pi}\right\rfloor \subset(0,1), \tag{A.2}
\end{align*}
$$

where in the first line we trivially rescaled m and the second line means that a is taken to be in the interval $(0,1)$, which is always possible to achieve by re-labelling the sum over KK modes. We note that the region $(0,1)$ is the fundamental region, as η is well-defined and smooth for all points (as opposed to the $(-1 / 2,+1 / 2)$ region which includes a singular point $a=0$). The computation of $\eta[0]$ is simplified by computing the derivative of (A.2) wrt a. Integration to recover the a-dependent part is then trivially done (note that an a-independent constant in $\eta[0]$ would be irrelevant, since a \hat{v}_{j}-independent term in $\eta_{j}[0]$ does not contribute to the sum in (2.31); furthermore it is prohibited by the "parity"-odd nature of $\eta[0]$). The derivative of (A.2) wrt a is now given by a convergent sum, which is:

$$
\begin{equation*}
\frac{d \eta[0]}{d a}=-\frac{1}{\pi} \lim _{m \rightarrow \infty} 2 m \sum_{n=-\infty}^{\infty} \frac{1}{(n+a)^{2}+m^{2}} \equiv-\frac{2}{\pi} \lim _{m \rightarrow \infty} m F(1, a, m), \tag{A.3}
\end{equation*}
$$

where the function $F(1, a, m)$ is implicitly defined by the last equality and is computed, e.g., in eq. (81) of $[25], F(1, a, m)=\frac{\sqrt{\pi}}{m}\left(\sqrt{\pi}+4 \sum_{p=1}^{\infty}(\pi p m)^{\frac{1}{2}} \cos (2 \pi p a) K_{\frac{1}{2}}(2 \pi p m)\right)$. When $m \rightarrow \infty$, only the first term in $F(1, a, m)$ survives, $\lim _{m \rightarrow \infty} m F(1, a, m)=\pi$, thus $\frac{d \eta[0]}{d a}=-2$, which determines $\eta_{j}[0]$ up to an integration constant:

$$
\begin{equation*}
\eta_{j}[0]=-2 a_{j}+c=-2\left(\frac{L \hat{v}_{j}}{2 \pi}-\left\lfloor\frac{L \hat{v}_{j}}{2 \pi}\right\rfloor\right)+c \tag{A.4}
\end{equation*}
$$

This periodic (in \hat{v}_{j}) result can be made "parity"-odd by taking $c=1$, giving back (2.24).

B Index for higher representation fermions

$\boldsymbol{R}^{\mathbf{3}}$. The Callias index theorem on R^{3} can be obtained by restricting the sum in (2.15) to $p=0$.

$$
\text { Fund. : } \quad \begin{align*}
\quad I_{F}\left(n_{1}, \ldots, n_{N-1}\right) & =-\frac{1}{2} \sum_{i=1}^{N} \operatorname{sign}\left(\hat{v}_{i}\right)\left(n_{i}-n_{i-1}\right) \\
& =-\frac{1}{2} \sum_{i=1}^{N-1} n_{i}\left[\operatorname{sign}\left(\hat{v}_{i}\right)-\operatorname{sign}\left(\hat{v}_{i+1}\right)\right]=n_{j *} \tag{B.1}
\end{align*}
$$

where $\hat{v}_{j^{*}}<0<\hat{v}_{j^{*}+1}$. Since there is no axial anomaly in $d=3$, there is no other contribution to the index and this is the final result. A better way to express (B.1), which is easily generalizable to arbitrary representation of the gauge group $\mathrm{SU}(N)$ is:

$$
\begin{equation*}
I_{F}\left(n_{1}, \ldots, n_{N-1}\right)=-\operatorname{tr}\left[\operatorname{sign}\left(A_{4}\right) \cdot \hat{B}\right] \tag{B.2}
\end{equation*}
$$

where $\operatorname{sign}\left(A_{4}\right)$ is the sign matrix and $\hat{B}=\sum_{i=1}^{N-1} n_{i}\left(\alpha_{i} \mathbf{H}\right)$ is the space independent part of eq. (1.17). For an arbitrary representation \mathcal{R}, this formula generalizes as:

$$
\begin{equation*}
I_{\mathcal{R}}\left(n_{1}, \ldots, n_{N-1}\right)=-\operatorname{tr}_{\mathcal{R}}\left[\operatorname{sign}\left(A_{4}\right) \cdot \hat{B}\right] \tag{B.3}
\end{equation*}
$$

Our main interest is in fermionic matter in two index representations of gauge group, namely, adjoint, antisymmetric (AS), symmetric (S) of $\mathrm{SU}(N)$ and bi-fundamental (BF) representation of $\mathrm{SU}(N) \times \mathrm{SU}(N)$. For the adjoint, the index is:

$$
\text { Adjoint: } \quad \begin{align*}
I_{\text {Adj }}\left(n_{1}, \ldots, n_{N-1}\right) & =-\frac{1}{2} \sum_{i, j=1}^{N} \operatorname{sign}\left(\hat{v}_{i}-\hat{v}_{j}\right)\left[\left(n_{i}-n_{i-1}\right)-\left(n_{j}-n_{j-1}\right)\right] \\
& =-\sum_{j=1}^{N-1} \sum_{i=1}^{N-1} n_{i}\left[\operatorname{sign}\left(\hat{v}_{i}-\hat{v}_{j}\right)-\operatorname{sign}\left(\hat{v}_{i+1}-\hat{v}_{j}\right)\right] \\
& =\sum_{j=1}^{N-1} 2 n_{j} . \tag{B.4}
\end{align*}
$$

This means that in the background of each elementary monopole, there are two fermionic zero modes. For the other two-index representations, the expressions are:

$$
\begin{array}{ll}
\mathrm{BF}: & I_{B F}\left(n_{1}^{1}, \ldots, n_{N-1}^{1}, n_{1}^{2}, \ldots, n_{N-1}^{2}\right)=-\frac{1}{2} \sum_{i, j=1}^{N} \operatorname{sign}\left(\hat{v}_{i}^{1}-\hat{v}_{j}^{2}\right)\left[\left(n_{i}^{1}-n_{i-1}^{1}\right)-\left(n_{j}^{2}-n_{j-1}^{2}\right)\right] \\
\mathrm{AS}: & I_{A S}\left(n_{1}, \ldots, n_{N-1}\right)=-\frac{1}{2} \sum_{i>j}^{N} \operatorname{sign}\left(\hat{v}_{i}+\hat{v}_{j}\right)\left[\left(n_{i}-n_{i-1}\right)+\left(n_{j}-n_{j-1}\right)\right] \\
\mathrm{S}: & I_{S}\left(n_{1}, \ldots, n_{N-1}\right)=-\frac{1}{2} \sum_{i \geq j}^{N} \operatorname{sign}\left(\hat{v}_{i}+\hat{v}_{j}\right)\left[\left(n_{i}-n_{i-1}\right)+\left(n_{j}-n_{j-1}\right)\right] \tag{B.5}
\end{array}
$$

It is more convenient to express the index for AS / S representations as:

$$
\begin{align*}
I_{A S / S} & =-\frac{1}{4} \sum_{i, j=1}^{N} \operatorname{sign}\left(\hat{v}_{i}+\hat{v}_{j}\right)\left[\left(n_{i}-n_{i-1}\right)+\left(n_{j}-n_{j-1}\right)\right] \pm \sum_{i}^{N} \operatorname{sign}\left(2 \hat{v}_{i}\right)\left(n_{i}-n_{i-1}\right) \\
& =-\frac{1}{2} \sum_{i, j=1}^{N-1} n_{i}\left[\operatorname{sign}\left(\hat{v}_{i}+\hat{v}_{j}\right)-\operatorname{sign}\left(\hat{v}_{i+1}+\hat{v}_{j}\right)\right] \pm \sum_{i}^{N-1} n_{i}\left[\operatorname{sign}\left(2 \hat{v}_{i}\right)-\operatorname{sign}\left(2 \hat{v}_{i+1}\right)\right] \tag{B.6}
\end{align*}
$$

$\boldsymbol{R}^{\mathbf{3}} \times \boldsymbol{S}^{\mathbf{1}}$. This formulae can be straightforwardly generalized to $R^{3} \times S^{1}$ by repeating our derivations for the fundamental. The non-integer contributions to the index from the topological charge cancel the corresponding non-integer part of the η-invariant, yielding a general expression; further, if the definition of \hat{B} is extended to include the affine root (1.14), $\hat{B}=\sum_{i=1}^{N} n_{i}\left(\alpha_{i} \mathbf{H}\right)$, with n_{1}, \ldots, n_{N-1} are the monopole numbers of the background and n_{N}-the KK-monopole number, this equation can be also extended to also include the KK monopole:

$$
\begin{equation*}
I_{\mathcal{R}}\left[n_{1}, \ldots, n_{N}\right]=2 T(\mathcal{R}) n_{N}-\operatorname{tr}_{\mathcal{R}}\left\lfloor\frac{A_{4} L}{2 \pi}\right\rfloor \cdot \hat{B} \tag{B.7}
\end{equation*}
$$

The second term in (B.7) follows from (2.13), (2.25) by simply extending the definition of \hat{B} to include the affine-root monopole (and by dropping the non-integer terms) while the first term is due to the (negative) integer topological charge contribution to the index of the KK monopole. For reference,

$$
\begin{equation*}
2 T(\mathcal{R})=\{1,2 N, N, N+2, N-2\}, \quad \text { for } \mathcal{R}=\{\mathrm{F}, \mathrm{Adj}, \mathrm{BF}, \mathrm{~S}, \mathrm{AS}\} \tag{B.8}
\end{equation*}
$$

for a single Weyl fermion. Note that

$$
\begin{equation*}
I_{\mathcal{R}, \text { instanton }}=I_{\mathcal{R}, R^{3} \times S^{1}}[1,1, \ldots, 1,1]=2 T(\mathcal{R}) \tag{B.9}
\end{equation*}
$$

is just the APS index for an BPST instanton.

References

[1] D.J. Gross, R.D. Pisarski and L.G. Yaffe, $Q C D$ and instantons at finite temperature, Rev. Mod. Phys. 53 (1981) 43 [SPIRES].
[2] D. Diakonov and V. Petrov, Confining ensemble of dyons, Phys. Rev. D 76 (2007) 056001 [arXiv:0704.3181] [SPIRES].
[3] M. Shifman and M. Ünsal, QCD-like theories on $R_{3} \times S_{1}$: a smooth journey from small to large $r\left(S_{1}\right)$ with double-trace deformations, Phys. Rev. D 78 (2008) 065004 [arXiv:0802.1232] [SPIRES].
[4] M. Ünsal and L.G. Yaffe, Center-stabilized Yang-Mills theory: confinement and large- N volume independence, Phys. Rev. D 78 (2008) 065035 [arXiv:0803.0344] [SPIRES].
[5] M. Shifman and M. Ünsal, On Yang-Mills theories with chiral matter at strong coupling, arXiv:0808. 2485 [SPIRES].
[6] J.C. Myers and M.C. Ogilvie, New phases of $\mathrm{SU}(3)$ and $\mathrm{SU}(4)$ at finite temperature, Phys. Rev. D 77 (2008) 125030 [arXiv:0707.1869] [SPIRES];
M.C. Ogilvie, P.N. Meisinger and J.C. Myers, Exploring partially confined phases, PoS LAT2007 (2007) 213 [arXiv:0710.0649] [SPIRES].
[7] J.C. Myers and M.C. Ogilvie, Exotic phases of finite temperature $\operatorname{SU}(N)$ gauge theories, arXiv:0810. 2266 [SPIRES].
[8] E.J. Weinberg, Parameter counting for multi-monopole solutions, Phys. Rev. D 20 (1979) 936 [SPIRES].
[9] E.J. Weinberg, Fundamental monopoles and multi-monopole solutions for arbitrary simple gauge groups, Nucl. Phys. B 167 (1980) 500 [SPIRES].
[10] A.J. Niemi and G.W. Semenoff, Index theorems on open infinite manifolds, Nucl. Phys. B 269 (1986) 131 [SPIRES]; Spectral Asymmetry On An Open Space, Phys. Rev. D 30 (1984) 809 [SPIRES].
[11] C. Callias, Index theorems on open spaces, Commun. Math. Phys. 62 (1978) 213 [SPIRES].
[12] M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry 1, Math. Proc. Cambridge Phil. Soc. 77 (1975) 43 [SPIRES].
[13] T.M.W. Nye and M.A. Singer, An L^{2}-Index Theorem for Dirac Operators on $S^{1} \times R^{3}$, math.DG/0009144 [SPIRES].
[14] A.I. Vainshtein, V.I. Zakharov, V.A. Novikov and M.A. Shifman, ABC of instantons, Sov. Phys. Usp. 25 (1982) 195 [Usp. Fiz. Nauk 136 (1982) 553] [SPIRES].
[15] I.S. Gradstheyn and I.M. Ryzhik, Tables of integrals, sums, series, and products, Fizmatgiz, Moscow (1963); Fundamentals of the theory of quasigroups and loops (English translation), Academic Press, New York U.S.A. (1965).
[16] K.-M. Lee and P. Yi, Monopoles and instantons on partially compactified D-branes, Phys. Rev. D 56 (1997) 3711 [hep-th/9702107] [SPIRES].
[17] T.C. Kraan and P. van Baal, Periodic instantons with non-trivial holonomy, Nucl. Phys. B 533 (1998) 627 [hep-th/9805168] [SPIRES].
[18] N.M. Davies, T.J. Hollowood, V.V. Khoze and M.P. Mattis, Gluino condensate and magnetic monopoles in supersymmetric gluodynamics, Nucl. Phys. B 559 (1999) 123 [hep-th/9905015] [SPIRES].
[19] R. Jackiw and C. Rebbi, Solitons with fermion number 1/2, Phys. Rev. D 13, (1976) 3398 [SPIRES].
[20] A.J. Niemi and G.W. Semenoff, Axial anomaly induced fermion fractionization and effective gauge theory actions in odd dimensional space-times, Phys. Rev. Lett. 51 (1983) 2077 [SPIRES];
A.N. Redlich, Parity violation and gauge noninvariance of the effective gauge field action in three-dimensions, Phys. Rev. D 29 (1984) 2366 [SPIRES].
[21] E. Witten, Toroidal compactification without vector structure, JHEP 02 (1998) 006 [hep-th/9712028] [SPIRES].
[22] N. Seiberg and E. Witten, Gauge dynamics and compactification to three dimensions, hep-th/9607163 [SPIRES].
[23] L. Álvarez-Gaumé, S. Della Pietra and G.W. Moore, Anomalies and odd dimensions, Ann. Phys. 163 (1985) 288 [SPIRES].
[24] L. Álvarez-Gaumé, S. Della Pietra and V. Della Pietra, The effective action for chiral fermions, Phys. Lett. B 166 (1986) 177 [SPIRES].
[25] E. Ponton and E. Poppitz, Casimir energy and radius stabilization in five and six dimensional orbifolds, JHEP 06 (2001) 019 [hep-ph/0105021] [SPIRES].
[26] O.J. Ganor and Y.P. Hong, Selfduality and Chern-Simons theory, arXiv:0812.1213 [SPIRES].

[^0]: ${ }^{1}$ The center-stabilized small- S^{1} regime of gauge theories is amenable to both numerical lattice simulations and non-perturbative semi-classical techniques. In this sense, this regime provides a first example in which we can confront a controlled approximation, including non-perturbative effects, with the lattice, and is, in our opinion, an important opportunity for both lattice and continuum gauge field theory.

[^1]: ${ }^{2}$ To avoid (or add) confusion, recall that the index (2.1) for a fundamental Weyl fermion in an antiselfdual instanton should be +1 , as it is D, in the notation of section 1.3 , that has a normalizable zero mode.

[^2]: ${ }^{3}$ Recall that $n_{0}=n_{N}=0$ is understood for the static solution.

[^3]: ${ }^{4}$ An equivalent way to to define the η-invariant is via its integral representation. Let $H=i \frac{d}{d y}+A_{4}$. Then,

 $$
 \begin{equation*}
 \eta[H, s] \equiv \operatorname{tr} \frac{H}{\left(H^{2}\right)^{(s+1) / 2}} \equiv \frac{1}{\Gamma\left(\frac{s+1}{2}\right)} \int_{0}^{\infty} d t t^{(s-1) / 2} \operatorname{tr}\left[H e^{-H^{2} t}\right] . \tag{2.17}
 \end{equation*}
 $$

 This representation makes sense for large $\operatorname{Re}(s)>0$ and admits a holomorphic extension to the whole complex plane. This discussion is completely parallel to much often encountered ζ function regularization, for which:

 $$
 \begin{equation*}
 \zeta[H, s] \equiv \operatorname{tr}\left[H^{-s}\right] \equiv \frac{1}{\Gamma(s)} \int_{0}^{\infty} d t t^{(s-1)} \operatorname{tr}\left[e^{-H t}\right] \tag{2.18}
 \end{equation*}
 $$

[^4]: ${ }^{5}$ Note that, with $A_{\mu}^{U}=U A_{\mu} U^{\dagger}-i U \partial_{\mu} U^{\dagger}$, we have $K^{\mu}\left(A^{U}\right) \quad=\quad K^{\mu}(A)+$ $\epsilon^{\mu \nu \lambda \kappa}\left(\frac{4}{3} \operatorname{tr}\left(U \partial_{\nu} U^{\dagger} U \partial_{\lambda} U^{\dagger} U \partial_{\kappa} U^{\dagger}\right)+4 i \partial_{\nu} \operatorname{tr}\left(A_{\lambda} U^{\dagger} \partial_{\kappa} U\right)\right)$ and the singular static gauge transformation does not introduce a shift to K_{m}.

[^5]: ${ }^{6}$ We use quotation marks as fields related by (2.36) are not on the same gauge orbit.

[^6]: ${ }^{7}$ Recall that in the nonabelian case, $S_{C S}=\int d^{3} x \frac{k}{4 \pi} \epsilon^{l i m} \operatorname{tr}\left(A_{l} \partial_{i} A_{m}+\frac{2 i}{3} A_{l} A_{i} A_{m}\right)$, where the trace is in the fundamental, and that k is quantized. To see this, let $\mathrm{U}(x)$ denote a gauge rotation for which $\pi_{3}(G)$ is non-trivial, i.e, $\int \frac{1}{24 \pi^{2}} \epsilon^{\nu \lambda \kappa} \operatorname{tr}\left[U \partial_{\nu} U^{\dagger} U \partial_{\lambda} U^{\dagger} U \partial_{\nu} U^{\dagger}\right] \equiv \int \omega(x) \in \mathbb{Z}$. Under a gauge transformation, the variation of the action is given in footnote (5) and yields $S_{C S}\left(A^{U}\right)=S_{C S}(A)+i(2 \pi k) \int \omega(x)$, in Euclidean space, showing that gauge invariance of the partition function demands quantization of k.

[^7]: ${ }^{8}$ If this condition is not obeyed, the following equations have to be modified accordingly, as was done in the computation of the index.

[^8]: ${ }^{9}$ For complex representation Dirac fermions, these "chirally-twisted" boundary conditions can also be rewritten as $\Psi(x, y+L)=e^{i \alpha} \mathcal{R}^{\gamma_{5}} \Psi(x, y)$.

[^9]: ${ }^{10}$ That this theory is actually SYM plays no role, as one can similarly consider multi-adjoint theories. The discussion can also be generalized to Dirac fermions in complex, two-index representations. For $\mathcal{R}=\{\mathrm{AS}, \mathrm{S}, \mathrm{BF}, \mathrm{F}\}$ representations, there are respectively, $2 T(\mathcal{R})$ disconnected components (B.8), and for $2 T(\mathcal{R})-1$ of them, the long distance physics reduces to pure Chern-Simons theory. In particular, for QCD with one fundamental fermions, there is no admissible boundary condition for which the infrared physics reduces to CS-theory.

